A COMPUTER PROGRAM FOR GEOCHEMICAL

ANALYSIS OF ACID-RAIN AND OTHER

LOW-IONIC-STRENGTH, ACIDIC WATERS

By Patricia A. Johnsson and Deborah G. Lord

U. S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 87-4095A

Prepared in cooperation with the

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL

PROTECTION, DIVISION OF WATER RESOURCES

West Trenton, New Jersey

DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief Geological Survey Water Resources Division Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, NJ 08628 Copies of this report (WRIR 87-4095A) can be purchased from this address:

U.S. Geological Survey Books and Open-File Reports Federal Center, Bldg. 41 Box 25425, Denver, CO 80225

Copies of the Attachment C Source Code (WRIR 87-4095B) on diskette can be purchased from the address given above.

CONTENTS

	Page
Abstract	. 1
Introduction	. 1
Purpose and scope	. 2
Acknowledgments	
Geochemical basis for computer program	
Major equilibrium equations	
Aluminum equilibria	
Organic-anion concentration	•
Alkalinity equations	
	-
Fluoride concentrations	-
Activity coefficients and ionic strength	
Structure of computer program	
Special interpretive features of computer program	
Ion ratios	
Cation/anion balances	
Specific conductance	
Component flags	. 14
Limitations of computer program	. 14
Data input	. 16
Test case	. 17
Summary	. 17
References cited	
Attachment A. Sample input file	
Attachment B. A sample output file	
Attachment C. Source code	
Accacimient o. Source code	. 24
TABLES	
Table 1. Major equilibrium relations considered by	
computer program	. 3
2. Aluminum equilibrium relations considered by	. ,
·	F
computer program	
3. Values of a in the Debye-Hückel equation	
4. Values of A and B in the Debye-Hückel equation	
5. Limiting ion conductances at 25°Celsius	. 15

A COMPUTER PROGRAM FOR GEOCHEMICAL ANALYSIS OF ACID-RAIN AND OTHER LOW-IONIC-STRENGTH, ACIDIC WATERS

By Patricia A. Johnsson and Deborah G. Lord

ABSTRACT

This paper describes ARCHEM, a computer program written in FORTRAN 77¹, which is designed primarily for use in the routine geochemical interpretation of low-ionic-strength, acidic waters. On the basis of chemical analyses of the water and either laboratory or field determinations of pH, temperature, and dissolved oxygen, the program calculates the equilibrium distribution of major inorganic aqueous species and of inorganic aluminum complexes. The concentration of the organic anion is estimated from the dissolved organic carbon concentration, and the ratio of ferric to ferrous iron is calculated from the dissolved oxygen concentration. Ionic balances and comparisons of computed with measured specific conductance are performed as checks on the analytical accuracy of chemical analyses. ARCHEM may be tailored easily to fit different sampling protocols, and may be run on multiple sample analyses.

INTRODUCTION

Researchers of acidic deposition (acid rain) are commonly confronted with unique geochemical problems in data interpretation because of the low pH and low ionic strength of precipitation. In areas affected by acid rain, surface and ground waters are commonly acidified, and may even display some interesting geochemical properties such as negative alkalinities. Surfacewater geochemistry can be particularly complex in areas such as the New Jersey Pinelands (Means and others, 1981), the North Carolina Sandhills region (J.K. Crawford, U.S. Geological Survey, Raleigh, N.C., oral commun., 1986), and the Bickford watershed, in Massachusetts (Eshleman and Hemond, 1985), where organic materials are present in high concentrations. Although there is a substantial library of geochemical computer models, including WATEQ² (Truesdell and Jones, 1974), SOLMENEQ³ (Kharaka and Barnes, 1973), and MINEQL⁴ (Westall and others, 1976), among others (see Nordstrom, 1979, for a review), the peculiarities of many low-ionic-strength waters require special modeling techniques.

ARCHEM⁵, a FORTRAN 77 computer program, was designed specifically to deal with geochemical factors such as: pH, alkalinity, organic-anion concentration, and aluminum speciation in a manner rigorous enough for use

¹ Use of trade names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

 $^{^{2}}$ WATEQ is the acronym for a computer program for calculating chemical equilibria of natural waters.

 $^{^{3}}$ SOLMENEQ is the acronym for a computer program for solution-mineral equilibrium computations.

⁴ MINEQL is the acronym for a computer program for the calculation of chemical equilibrium composition of aqueous species.

 $^{^{5}}$ ARCHEM is the acronym for a computer program for geochemical analysis of acid-rain and other low-ionic-strength, acidic waters.

with low-ionic-strength waters. ARCHEM is not intended to be as sophisticated a model as WATEQ, SOLMENEQ, and MINEQL, nor does it give as detailed information on solution-mineral equilibria. The number of reactions considered by the model is limited, and a number of simplifications and estimation techniques are employed. However, the model may be used simply and effectively in the routine geochemical interpretation of low-ionic-strength, acidic water samples, and in the evaluation of their analytical accuracy. ARCHEM may be most useful for precipitation samples, which generally do not warrant calculations of mineral saturation indexes; for samples containing dissolved organics that can greatly complicate the geochemistry through interactions which are at present not well understood; and for performing checks on the analytical accuracy of large numbers of samples.

Like many existing geochemical computer programs, ARCHEM is based on an equilibrium model that uses both mass balance and mass action equations. The equations are solved through the method of successive iterations (Garrels and Thompson, 1962; Truesdell and Jones, 1974). The main body of the program calculates: (1) equilibrium molarities and activities of major aqueous species (see table 1), including an estimation of the organic-anion concentration; (2) equilibrium concentrations of major aluminum species (see table 2); and (3) ionic strength.

Purpose and Scope

This paper describes (1) the geochemical equations used to perform these calculations, (2) the iterative method for solving these equations, and (3) a number of calculations that aid in the interpretation of water chemistry. These calculations include (1) ion ratios, including a ferric to ferrous iron ratio computed from oxidation-reduction equations; (2) cation/anion balances based on analytical and computed data and inclusion of the organic-anion concentration as a component; and (3) specific conductance.

<u>Acknowledgments</u>

Thanks are given to R. C. Reynolds, Jr. of Dartmouth College, and R. F. Stallard and M. J. Johnsson of Princeton University for their assistance and valuable discussion.

GEOCHEMICAL BASIS FOR COMPUTER PROGRAM

Major Equilibrium Equations

Table 1 is a list of the major, non-aluminum equilibrium relations considered in ARCHEM. Both the equations and their corresponding thermodynamic values are from Truesdell and Jones (1974, p. 234-240). For the major reactions in table 1, the equilibrium constants (K_t) are calculated for input temperatures from 0° to 30°C. These calculations are based on the Van't Hoff equation at constant pressure:

$$d\ln K/dT = \Delta H/RT^2 \tag{1}$$

Table 1.--Major equilibrium relations considered by computer program [Adapted from Truesdell and Jones, 1974]

	*	*
Reaction	log K	H _r
$H_2CO_3 = HCO_3^- + H^+$	-6.379	1,976
$HCO_3^- = H^+ + CO_3^{-2}$	-10.330	3,550
$Mg^{+2} + HCO_3^- = MgHCO_3^+$	0.928	1.037
$Ca^{+2} + HCO_3^- = CaHCO_3^+$	1.260	6,331
$Mg^{+2} + SO_4^{-2} = MgSO_4^{0}$	2.238	4,920
$Ca^{+2} + SO_4^{-2} = CaSO_4^{0}$	2.309	1,650
$Mg^{+2} + CO_3^{-2} = MgCO_3^{0}$	3.398	58
$Ca^{+2} + CO_3^{-2} = CaCO_3^{0}$	3.200	3,130
$H_2O = H^+ + OH^-$	-13.998	13,345

^{*} K is the equilibrium constant at 25°C. H is the heat of reaction at 25°C (298°K).

where K is the equilibrium constant, T is the absolute temperature (degrees Kelvin), R is the ideal gas constant (1.99 calories/mole), and ΔH is the change in enthalpy of a reaction. From this equation, the expression for K at temperatures other than 25° Celsius can be derived:

$$K_{t} = K_{25} \times 10^{((\Delta H /(2.303 \times R)) \times ((T_{2} - 298^{\circ}K)/(T_{2} \times 298^{\circ}K)))}$$
 (2)

where $\rm K_{25}$ is the value of the equilibrium constant at 25°C (298°K) and $\rm K_{t}$ is the value of the equilibrium constant at the sample temperature, $\rm T_{2}$, in degrees Kelvin.

The Van't Hoff equation, as presented above, assumes that the enthalpy change is independent of temperature. This assumption is not, in fact, correct for all of the reactions considered by ARCHEM. Although corrections for enthalpy changes can be made (see Stumm and Morgan, 1981, p. 69-71), ARCHEM uses the more simple equation presented above. According to Hem (1985), the use of the Van't Hoff equation as an approximation "is applicable over temperature ranges to be expected in most natural waters." The program is intended and designed for use on samples approaching standard pressure and temperature conditions, so that this approximation does not present additional limitations.

Aluminum Equilibria

ARCHEM also calculates the equilibrium concentrations of inorganic aluminum species (see table 2), because (1) aluminum species can act as the predominant buffering agents in low-ionic-strength waters (see, for example, Johnson and others, 1981), and (2) certain aluminum species may be toxic to fish populations (Driscoll and others, 1980) and may adversely affect tree growth (Ulrich and others, 1980). Table 2 is a list of the aluminum equilibrium equations and thermodynamic values utilized by ARCHEM. values were chosen on the basis of (1) values prevalent in the recent acidrain literature (see, for example, Johnson and others, 1981; Driscoll, 1984; and Cosby and others, 1985a) and (2) suggestions in Nordstrom and others (1984). An effort was made to maintain internal consistency within any one set of complexes (fluoride versus sulfate versus hydroxide) by choosing logK data from only one source for each of these sets (aluminum-fluoride complexes from Hem, 1968; aluminum-sulfate complexes from Behr and Wendt, 1962; and aluminum-hydroxide complexes from May and others, 1979). However, no attempt was made to maintain consistency between the sets of complexes.

Cozzarelli (U.S. Geological Survey, Reston, Va., written commun., 1987) cautions that the use of inconsistent thermodynamic data in the program may cause problems in the calculation of species' equilibrium distributions. The authors, therefore, strongly recommend that users perform a careful review of the recent literature before using the program. Nordstrom and others (1984), which is an excellent reference for such a review, provides a compilation of aluminum thermodynamic data along with recommendations for use, and a discussion of problems involving thermodynamic inconsistency. The responsibility for selection of thermodynamic data, for all of the species in the program, ultimately rests with the user. The thermodynamic values may be altered easily within the source code.

Table 2.--Aluminum equilibrium relations considered by computer program

Reaction	log K	Hr	Data source*
Fluo	oride Complexes		
$A1^{+3} + F^{-} = A1F^{+2}$	7.01	1.10	1;2
$A1^{+3} + 2F^{-} = A1F_{2}^{+}$	12.75	2.00	1;2
$A1^{+3} + 3F^{-} = A1F_{3}^{0}$	17.02	2.50	1;2
$Al^{+3} + 4F^{-} = AlF_{4}^{-}$	19.72	2.20	1;2
$A1^{+3} + 5F^{-} = A1F_{5}^{-2}$	20.91	1.80	1;2
$Al^{+3} + 6F^{-} = AlF_{6}^{-3}$	20.86	0.10	1;3
Suli	fate Complexes		
$A1^{+3} + S0_{4}^{-2} = A1S0_{4}^{+}$	3.20	2.29	4;5
$a1^{+3} + 2SO_4^{-2} = A1(SO_4)_2^{-1}$	5.10	3.07	4;5
Hydı	coxide Complexes	S	
$A1^{+3} + H_2O = A1(OH)^{+2} + H^{+}$	-4.99	14.775	6;7
$A1^{+3} + 2H_2O = A1(OH)_2^{+} + 2H^{+}$	-10.13	22.0	6;3
$AL^{+3} + 3H_2O = AL(OH)_3^O + 3H^+$	-16.76	33.0	6;3
$A1^{+3} + 4H_2O = A1(OH)_4^- + 4H^+$	-22.16	42.22	6;7
Total inorganic Aluminum = [Al ⁺³]	+ [A1(OH) ⁺ 2] +	+ [A1(OH) ₂ +] + [Al(OH) ₄]
$Al(SO_4)^+] + [Al(SO_4)_2^-] + [AlF^+]$	²] + [AlF ₂ ⁺] + [[AlF ₃ °] + [A	$A1F_4$] + $[A1F_5$
[AlF ₆ ⁻³]			
- -			

^{*}Data Sources:

¹ Hem, 1968.

² Smith and Martell, 1976.

³ Nordstrom and others, 1984.

⁴ Behr and Wendt, 1962.

⁵ Izatt and others, 1969.

⁶ May and others, 1979.

⁷ Plummer and others, 1976.

If dissolved aluminum has been analytically fractionated into nonlabile monomeric aluminum (monomeric alumino-organic complexes) and labile monomeric aluminum (free aluminum and alumino-sulfate, fluoride, and hydroxide complexes), then the program will subtract out organically bound aluminum before calculating concentrations of inorganic species. Otherwise, the programmer may choose between two options: (1) to calculate aluminum speciation treating the input value of aluminum as the total of all inorganic aluminum, or (2) to set the concentration of Al ³ equal to the input value of aluminum, disregarding speciation entirely. In many instances, option (1) may give a better value for the computed ion balance. because AlF 2 is generally the dominant inorganic aluminum species (LaZerte, 1984). Aluminum fractionation by analytical means is strongly recommended, however, because the concentrations of dissolved inorganic aluminum species may be overestimated in waters containing organically-bound aluminum. A potential method for estimating the maximum quantity of aluminum that may be bound to organics is discussed below.

Organic-anion Concentration

Oliver and others (1983) showed that calculation of the concentration of the 'organic anion', which results from the dissociation of aquatic humic substances, can greatly improve ion balances for highly-colored natural waters. ARCHEM, therefore, performs an estimation of the organic-anion concentration, based on the equations derived by Oliver and others (1983) for "highly colored natural waters, where most of the organic carbon is humic material." First, an empirical expression is used to calculate the negative logarithm of the mass action quotient of humic and fulvic acids (the pK) from the pH:

$$pK = 0.96 + (0.90 \times pH) - (0.039 \times pH^2)$$
 (3)

(Oliver and others, 1983, p.2033). Next, the concentration of organic acid (C_t) is calculated by multiplying the dissolved organic carbon concentration (DOC) in milligrams per liter by 10 μ eq/mg C (microequivalents per milligram carbon)--the factor that Oliver and others (1983) found to be representative of humic substances from a variety of surface and ground waters in North America and Hawaii. This factor can be changed easily within the body of ARCHEM (see documentation in the source code) in instances where 10 μ eq/mg C is not a representative value. Finally, the values thus calculated are substituted into the following equation to determine the organic-anion concentration [OA]:

$$[OA] = K \times [C_t]/(K + [H^+])$$
 (Oliver and others, 1983, p. 2034). (4)

Alkalinity Equations

The equation for alkalinity can be used along with mass action and mass balance equations in solving for the equilibrium concentrations of species. The equation for alkalinity must, however, be defined according to the specific chemical characteristics of any given system. A generalized

alkalinity equation was synthesized from the recent acid-rain literature. This equation is applicable to a wide range of conditions, including waters with negative values of alkalinity.

In ARCHEM, the concentrations of phosphate ion, of the organic anion, and of the major aluminum species as defined by Cosby and others (1985b, p. 1594) have been added to the standard form of the alkalinity equation (Stumm and Morgan, 1981, p. 188):

$$A1k = [HCO_3^-] + 2[CO_3^{-2}] + [OH^-] - [H^+]$$
 (5)

to yield:

Alk =
$$[HCO_3^-] + 2[CO_3^{-2}] + [OH^-] + [OA^-] - 3[Al^{+3}] + [Al(OH)_4^-] + 3[PO_4^{-3}]$$

$$- [H^+] - 2[AlOH^{+2}] - [Al(OH)_2^+] - 3[AlF^{+2}] - 3[AlF_2^+] - 3[AlF_3^0]$$

$$- 3[AlF_4^-] - 3[AlF_5^{-2}] - 3[AlF_6^{-3}] - 3[Al(SO_4^+)] - 3[Al(SO_4)_2^-].$$
(6)

This equation can be rearranged and used to solve for the concentrations of the bicarbonate ($[HCO_3^-]$) and carbonate ($[CO_3^-]$) ions. In these and future equations, [] represents molar concentrations.

Alkalinity can also be defined as the sum of base cations (C_b) minus the sum of strong acid anions (C_a) (Stumm and Morgan, 1981, p. 182). ARCHEM, therefore, performs a second calculation of alkalinity according to the equation:

$$A1k = C_b - C_a = [Na^+] + [K^+] + [NH_4^+] + 2[Ca^{+2}] + 2[Mg^{+2}]$$

$$- [C1^-] - [NO_3^-] - 2[SO_4^{-2}] - [F^-].$$
(7)

The value of alkalinity thus computed is reported in the output file but is not utilized in further equilibrium calculations. This value of alkalinity can, however, be used as a rough check on the analytical value of alkalinity, and can be used in future runs of the program as an estimate of the alkalinity when no analytical value is available.

Fluoride Concentrations

Fluoride is a particularly important component of the equations considered by ARCHEM because of the role fluoride plays in complexing aluminum (see table 2). The program's treatment of fluoride depends on the method of analysis. If an ion-specific electrode was used, then the activity of the fluoride ion ($\{F^{-}\}$) is set equal to the input value for fluoride. However, if only the concentration of total dissolved fluoride was determined, then an extra set of equations must be added to the equilibrium equations described above in order to solve for free fluoride, $[F^{-}]$. In this case, the assumption:

[Total Fluoride] =
$$[HF] + [F] + [AlF^{\dagger_2}],$$
 (8)

where

$$H^+ + F^- = HF$$
; $\log_{10}K = 3.17$ (Roberson and Hem, 1969, p. C3) (9)

is a necessary simplification (LaZerte, 1984) that yields a linear expression and first approximation for [F]. The value of [F] determined from this equation is then substituted into the other equilibrium equations in order to solve for the concentrations of the various aluminum-fluoride components. The value of [F] is refined by the iterative procedure.

Activity Coefficients and Ionic Strength

The reactions presented in tables 1 and 2 and equation 9 have corresponding mass action equations which may be used in solving for the concentrations of species at equilibrium. For a generalized reaction:

$$aA + bB = cC + dD, (10)$$

with an equilibrium constant K, the mass action equation would be:

$$\frac{\{A\}^{a}\{B\}^{b}}{\{C\}^{c}\{D\}^{d}} = K, \tag{11}$$

where {} symbolizes an activity. In order to utilize these mass action equations, ARCHEM must calculate the activity coefficients (γ_i s) of the various ionic species (where {A} = γ_a x [A]). The activity coefficients are dependent, in turn, on the ionic strength of the sample solution. The ionic strength (I) is calculated using the standard equation:

$$I = \frac{1}{2} \sum_{n=1}^{\infty} m_{i} z_{i}^{2} , \qquad (12)$$

where n is the total number of ions in solution, m_i is the molarity of the i-th ion in the solution, and z_i is the ion's charge (Garrels and Christ, 1965, p. 56).

The following extended form of the Debye-Hückel expression, accurate for ionic strengths of less than 0.1 (Stumm and Morgan, 1981, p. 135), is used to calculate the ion activity coefficients (γ_i) :

$$\log \gamma_{i} = -Az_{i}^{2}I^{\frac{1}{2}}/(1 + \dot{a}_{i}BI^{\frac{1}{2}})$$
 (13)

Here, \dot{a}_i is a constant related to the 'effective hydrated diameter' of the ion in solution (Garrels and Christ, 1965, p. 61), and A and B are constants whose values depend on temperature and pressure. The values of \dot{a}_i used by ARCHEM are listed in table 3. Values of A and B were calculated using empirical expressions designed to duplicate the values reported in Garrels and Christ (1965, p. 61). The equations, along with their results compared to the Garrels and Christ values, are reported in table 4. The calculated values agree well with the values from Garrels and Christ over the temperature range considered (0 to 30°C).

Table 3.--Values of \dot{a}_i in the Debye-Hückel Equation [Values from Klotz and Rosenberg, 1972.]

Species	å x 108
NH₄ ⁺	2.5
K ⁺ C1 - Br - I - NO ₃ -	3.0
$ \left.\begin{array}{c} SO_4^{-2} \\ PO_4^{-3} \end{array}\right\} $	4.0
$\left. \begin{array}{c} HCO_3 \\ Na^+ \end{array} \right\}$	4.0-4.5
CO ₃ -2	4.5
$ \left.\begin{array}{c} \operatorname{Ca}^{+_{2}} \\ \operatorname{Mn}^{+_{2}} \\ \operatorname{Fe}^{+_{2}} \end{array}\right\} $	6.0
${ m Mg}^{+_2}$	8.0
$\left.\begin{array}{c} \text{H}^+ \\ \text{Al}^{+_3} \\ \text{Fe}^{+_3} \end{array}\right\}$	9.0

Table 4.--Values of A and B in Debye-Hückel Equation *

Temperature degrees C	Garrels and Christ A	Calculated A	Garrels and Christ B	Calculated B
0	0.4883	0.4880	0.3241	0.3241
5	0.4921	0.4921	0.3249	0.3249
10	0.4960	0.4962	0.3258	0.3257
15	0.5000	0.5003	0.3262	0.3265
20	0.5042	0.5044	0.3273	0.3273
25	0.5085	0.5085	0.3281	0.3281
30	0.5130	0.5126	0.3290	0.3289

^{*} Equations used to calculate A and B values:

$$A = 0.0082(T-5) + 0.4291$$

where T is the temperature in degrees Celsius.

B = 0.3421 + 0.0008(T/5)

The activity coefficients of the ionic aluminum species are calculated in the manner of Johnson and others (1981) by taking the average of the activity coefficients of other species with the same charge.

ARCHEM treats pH as the negative logarithm of the hydrogen-ion activity. For any individual sample, the hydrogen-ion activity remains constant throughout the program.

Activity coefficients of all non-ionic species, including water, are taken to be 1.

STRUCTURE OF COMPUTER PROGRAM

The equilibrium relations (mass-action equations, and the organicanion, alkalinity, and fluoride equations), along with various mass-balance relationships, represent a group of simultaneous equations which can be solved through successive approximations. The equations are solved first using a carefully-chosen array of simplifications: the activity coefficients are set equal to 1, the sulfate concentration, $[SO_4^{-2}]$ is set equal to 10 percent of the total sulfate, and bicarbonate is set equal to the alkalinity. The value, $[SO_4^{-2}] = 0.10$ x total sulfate, is an arbitrary value that is refined by the program in future iterations. The molarity of free calcium, $[Ca^{+2}]$ is then calculated from the expression:

$$[Ga^{+2}] = [Total \ calcium] / (1 + X + Y + Z) ,$$
where $X = (\gamma Ca \times \gamma SO_4 \times [SO_4^{-2}]) / K_{CaSO_4}^{\circ} o ,$

$$Y = (\gamma HCO_3 \times \gamma Ca \times [HCO_3^{-1}]) / (K_{CaHCO_3}^{\circ} o \times \gamma CaHCO_3^{\circ}) ,$$

$$Z = (\gamma Ca \times \gamma CO_3 \times [CO_3^{-2}]) / (KCaCO_3^{\circ}) ,$$
(14)

and γ represents the appropriate activity coefficient.

Equation 14 is derived by substituting equilibrium mass action equations such as:

$$K_{CaSO_4}^{\circ} = \frac{\{Ca^{+2}\} \times \{SO_4^{-2}\}}{\{CaSO_4^{\circ}\}},$$
 (15)

where {} symbolizes an activity, into the mass-balance equation for calcium:

[Total calcium] =
$$[CaSO_4^o]$$
 + $[CaCO_3^o]$ + $[CaHCO_3^+]$ + $[Ca^{+2}]$ (16)
and solving for $[Ca^{+2}]$.

Free magnesium, $[Mg^{\dagger 2}]$ and free aluminum, $[Al^{\dagger 3}]$ are both calculated in a similar fashion. Although equilibrium concentrations are normally written in terms of molalities, ARCHEM uses molarities. This

simplification is valid because for dilute waters, the differences between molality and molarity are small and generally can be neglected (Garrels and Christ, 1965; Hem, 1985).

The $[{\rm Ca}^{+2}]$, $[{\rm Mg}^{+2}]$, and $[{\rm Al}^{+3}]$ values determined from equations similar to equation 14, are substituted back into mass-action equations such as equation 15 to calculate the concentrations of the various complexes. The ionic strength is calculated next, and is used to recalculate the activity coefficients of the separate ions (see equations 12 and 13). The bicarbonate concentration is recalculated from the alkalinity equation (see equation 6). The sulfate-ion concentration (old ${\rm SO}_4$) used in these calculations (where $[{\rm SO}_4^{-2}] = 0.10$ x total sulfate) is then compared to the sulfate-ion concentration (new ${\rm SO}_4$) calculated from the mass-balance equation:

$$[SO_4^{-2}] = [total sulfate] - [CaSO_4] - [MgSO_4] - ([AlSO_4^+] + 2[Al(SO_4)_2^-]), (17)$$

where the components in parentheses have values only if aluminum speciation is selected as an option. If these two sulfate values (old SO_4 and new SO_4) differ by less than 0.1 percent, then the iterations are halted and the various calculated concentrations are taken to be representative of the water sample, under equilibrium conditions. Otherwise, the sulfate ion concentration is increased by the amount (old SO_4 - new SO_4)/2, the calculations are performed again using the various refined values, and the loop is repeated until sulfate values converge. This convergence generally occurs within six iterations.

SPECIAL INTERPRETIVE FEATURES OF COMPUTER PROGRAM

After solving for equilibrium concentrations and activities, as described above, ARCHEM performs a series of calculations to assist in the interpretation of analytical and computed data. These calculations include ion ratios, cation/anion balances, and specific conductance. Ion ratios can be used to classify waters, to compare waters from similar or different geohydrologic sources, and in some instances, to determine the mineralogic sources of ions in solution (see Hem, 1985). Cation/anion balances and specific-conductance calculations can be used to evaluate the accuracy of water analyses. The analytical accuracy in turn limits the accuracy of all of the calculations performed by ARCHEM. As a further aid in the interpretation of water analyses, the input file for ARCHEM includes a section for identifying input values that are below the detection limit, estimated, or otherwise noteworthy. These 'flags,' which do not alter program functions, are included in the output file.

Ion Ratios

ARCHEM calculates the following ratios of analytical molarities: Na/Cl, Ca/Cl, Mg/Cl, K/Cl, Al/Cl, SO $_4$ /Cl, Ca/Mg, SO $_4$ /NO $_3$, H+/SO $_4$, H+/NO $_3$, and H+/(SO $_4$ + NO $_3$); and of computed molarities: Ca/Cl, Mg/Cl, SO $_4$ /Cl, and Al/Cl. The ratio of the logarithm of [Al $^{+3}$] to the pH is also calculated, because this ratio may be used in acid-rain studies to determine whether or not aluminum is in equilibrium with an Al(OH) $_3$ mineral (Johnson and others,

1981, p. 1430-1431; Hooper and Shoemaker, 1985, p 463). Lastly, the ratio of ferric to ferrous iron is calculated from the dissolved oxygen concentration (DO) using oxidation-reduction equations. The DO, in mg/L (milligrams per liter), is first converted to the partial pressure of oxygen (pO₂) using the equation:

$$p0_2 = D0/32000.$$
 (18)

The value of pO_2 , thus calculated, is then substituted into the equation for electron activity (Sato, 1960) to determine the electron activity (pE):

$$pE = 11.385 - pH + 1/4log(pO_2),$$
 (19)

where 11.385 is the value of -log $\rm K_{O_2}$ from Truesdell and Jones (1974, p. 239). This equation has been simplified by assuming that the activity of water is 1.

The ratio of ferric to ferrous iron is then calculated from the redox relation (Stumm and Morgan, 1981, p. 447):

$$pE = 13.01 + log(Fe^{+3})/(Fe^{+2})$$
 (20).

Cation/anion Balances

ARCHEM performs two cation/anion balances; one based on analytical data, and the other on computed data. The formula used to calculate percent difference is:

Percent difference =
$$\frac{\text{Sum of cations (eq/L) - sum of anions (eq/L)}}{\text{Sum of cations (eq/L) + sum of anions (eq/L)}}$$
 (19)

where eq/L represents equivalents per liter. The cation/anion balances have a few special features: (1) both balances include the organic anion concentration, which is computed as outlined above; (2) the analytical ion balance treats all iron present as Fe^{+3} , whereas the computed ion balance uses either Fe^{+3} or Fe^{+2} according to the pE computed above; (3) for positive alkalinity, the analytical ion balance sets the bicarbonate-ion concentration equal to the alkalinity; for negative alkalinity, the bicarbonate-ion concentration is set to zero; and (4) in instances where aluminum speciation is not calculated, the computed ion balance treats all aluminum as Al^{+3} . An error statement is printed if the analytical ion balance is off by more than 5 percent but less than 10 percent. A separate message flags imbalances greater than 10 percent.

Specific Conductance

The specific conductance of a water sample depends on the types and concentrations of dissolved ionic substances, and on the sample temperature. Along with cation/anion balances, specific-conductance (SC) calculations can thus serve as data-quality checks in aqueous geochemical systems (American Public Health Association and others, 1975). Calculations of equivalent conductances were first incorporated into an equilibrium computer model by

Reynolds (1978, p. 589-590), and his approach is utilized here. The specific conductance of a solution at 25°C can be calculated using the Onsager Limiting Law (Harned and Owen, 1958):

SC = 1000
$$\sum_{i} m_{i} z_{i} (\lambda_{o} i - (.634 \lambda_{o} i | z_{i} | I)),$$
 (22)

where m_i is the molarity of the i-th species in solution, z_i is the ion's charge, and I is the ionic strength of the solution. The values of λ i used by ARCHEM are presented in table 5.

For conductances measured on a meter that does not correct the reading to 25°C, the following equation is needed in order to compare calculated with measured conductance:

$$SCT = SC25/exp(0.02x[25-T]), (23),$$

where SC25 is the calculated conductance at 25°C and SCT is the conductance at the sample temperature, T (°C). This equation is based on the observation that conductance increases with temperature at a rate of about 2 percent per degree Celsius. Instructions for incorporating this equation are provided in the source code.

ARCHEM computes the percent difference between calculated and observed conductances according to the equation:

An error flag is printed if the value of SC difference is greater than 5 percent, and a separate message is printed for a SC difference of more than 10 percent.

Component Flags

As a final interpretive feature, the program is designed to read an extra line of input containing single-digit, real numbers which can be used to 'flag' important information about any particular component. For example, 'l.' may be used to symbolize a concentration below the detection limit; '2.' may represent an estimated value. These flags appear in a column of the output file, and can serve as useful indicators of the significance of values. The flags do not play an active role in determining program functions; the program uses whatever value is input, regardless of the flag. The treatment of detection-limit values and of missing values must be determined by the individual user.

LIMITATIONS OF COMPUTER PROGRAM

A number of factors limit the types of water samples that should be run on ARCHEM. The water temperature should be greater than 0° but less than 30°C (a temperature of 0.0° will cause mathematical problems), and the pH should be less than 10. Additionally, the ionic strength of the water should be less than 0.1, the maximum value permitted by the equation for the ion-activity coefficients (see equation 11). Lastly, the user should

Table 5.--Limiting ion conductances at 25°Celsius

Ion	lambda o
н ⁺	349.82
к ⁺	73.52
Na ⁺	50.11
½ Ca ⁺²	59.50
½ Mg ⁺²	53.06
**CaHCO ₃ +	45.
**MgHCO ₃ +	45.
c1 ⁻	76.34
Br ⁻	78.4
NO ₃	71.44
HCO ₃	44.48
¹ ⁄ ₂ CO ₃ −2	97.
он	198.
1 SO ₄ - 2	79.8

^{*} Data from MacInnes, 1961, unless otherwise indicated. ** Values estimated by Reynolds, 1978.

^{***}Value from the Handbook of Physics.

evaluate whether the chemical equations considered by ARCHEM and the constants such as those associated with complexing by organic material adequately describe the geochemical system and whether the species considered are likely to encompass the major species in solution.

Another important program limitation arises because the user must choose between laboratory and field data (pH, SC, and temperature) for use in calculating the equilibrium distribution of species and the value of SC difference. The program, therefore, must be run twice in order to compare equilibrium distribution of species under both field and laboratory conditions.

The following cautionary notes concern the use of the program: (1) the program assumes equilibrium conditions, and thus may yield results that are not representative of the water if nonequilibrium conditions exist; (2) the 10 μ eq/mg C conversion factor used in the organic-anion calculation may not be correct for a particular water sample and at best will yield only an estimate of the organic-anion concentration; (3) the treatment of iron is fairly crude, although the ferric to ferrous iron ratio should serve as an aid in detecting errors caused by this treatment; (4) although the program may be run on an incomplete data set, the results may be misleading; and (5) for samples that fail the analytical ion balance by greater than 10 percent, the calculated equilibrium concentrations may be erroneous due to analytical Furthermore, the chemistry of the water sample may limit the usefulness of the specific conductance calculation. As the pH decreases. the utility of the specific conductance calculation decreases. At low pH, the hydrogen ion dominates the sample conductance, so that the calculated specific conductance provides less information about the other ions in solution, but is an excellent check on the pH measurement.

The use of specific conductance calculations also may be limited by the presence of ions such as aluminum and iron, for which the limiting ion conductances are not known (Cronan, 1978). ARCHEM has been tested on more than 200 surface- and ground-water samples from McDonalds Branch basin in Lebanon State Forest, N.J., where the surface and ground waters often have high concentrations of dissolved aluminum and iron. In spite of the high aluminum and iron concentrations, the calculated specific conductances, generally, were within 5 percent of the measured values. Furthermore, the sample with the highest combined aluminum and iron values, 10,000 and 370 $\mu \rm g/L$ (D.G. Lord, U.S. Geological Survey, West Trenton, N.J., written commun., 1986), respectively, had a calculated specific conductance that differed from the measured value by only 6.4 percent.

ARCHEM may be run on data files containing from 1 to 50 sample analyses. The maximum number of samples may be reset using an available editor. Instructions for this procedure are outlined in the source code.

DATA INPUT

The format of sample input files is presented in Attachment A. In addition to the information contained in the input files, the program prompts the user for: (1) the name of the input file (up to 10 characters), (2) the name of the output file (up to 10 characters), (3) the date of the program run (up to 12 characters), and (4) the number of samples to be run

(up to 50 from any one file, in integer format). The maximum number of data files may be reset using an available editor. Instructions for this procedure are outlined in the source code.

TEST CASE

A sample output file is shown in Attachment B. This sample is from McDonalds Branch in Lebanon State Forest, N.J., and was obtained as part of a U.S. Geological Survey study of acidic deposition in McDonalds Branch basin. The waters of McDonalds Branch commonly have low pH, low alkalinity, and high concentrations of DOC, aluminum, and iron. The analytical ion balance for this sample has been improved significantly by the addition of the organic-anion concentration to the sum of anions. Without the organicanion concentration, the percent difference in cations and anions would have been 13.2; with the organic-anion concentration, the percent difference is only 7.2. Despite the high concentrations of aluminum and iron (1,300 and 290 µg/L, respectively) the percent difference in measured versus calculated specific conductance is only 3.1. Although aluminum fractionation was not performed on this sample, the equilibrium distribution of aluminum species has been calculated for display purposes. instances, ARCHEM may be used to estimate the maximum concentration of organically bound aluminum, by assuming that all of the calculated organic anion is balanced by aluminum (Thurman, E. M., U.S. Geological Survey Denver, Colo., oral commun., 1986). This approach is being evaluated presently by the authors.

SUMMARY

The computer program ARCHEM was designed for the routine geochemical interpretation of low-ionic-strength, acidic waters, as are commonly encountered in acid-rain studies. ARCHEM calculates equilibrium speciation, ionic strength, ion ratios, cation/anion balances, and specific conductance. The program has a number of special features, including a calculation of the organic-anion concentration, which can greatly improve cation/anion balances in some waters. Furthermore, the program allows for the input of negative alkalinity values. Lastly, ARCHEM may be run on files of multiple sample analyses.

REFERENCES CITED

- American Public Health Association and others, 1976, Standard methods for the examination of water and wastewater (14th ed.): Washington D.C., American Public Health Association, 1193 p.
- Behr, Barbara, and Wendt, H., 1962, Fast ion reactions in solutions, (I) formation of the aluminum sulfate complex: Zeitschr. Elekrochemie, v. 66, p. 223-228.
- Condon, E.U., and Odishaw, Hugh, editors, 1967, Handbook of physics (2nd ed.): New York, McGraw-Hill Book Company.
- Cosby, B.J., Hornberger, G.M., and Galloway, J.N., 1985a, Modeling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry: Water Resources Research, v. 21, no. 11, p. 51-63.
- Cosby, B.J., Hornberger, G.M., Galloway, J.N., and Wright, R.F., 1985b, Modeling the effects of acid deposition: Estimation of long-term water quality responses in a small forested catchment: Water Resources Research, v. 21, no. 11, p. 1591-1601.
- Cronan, C.S., 1978, Solution chemistry of a New Hampshire subalpine ecosystem: Biogeochemical patterns and processes: unpublished Ph.D. thesis, Dartmouth College, Hanover, New Hampshire. 248 p.
- Driscoll, C.T., 1984, A procedure for the fractionation of aqueous aluminum in dilute acidic waters: International Journal of Environmental Analytical Chemistry, v. 16, p. 267-283.
- Driscoll, C.T., Jr., Baker, J.P., Biscogni, J.J., Jr., and Schofield, C.L., 1980, Effect of aluminum speciation on fish in dilute acidified waters: Nature, v. 284, p. 161-164.
- Eshleman, K.N., and Hemond, H.F., 1985, The role of organic acids in the acid-base status of surface waters at Bickford Watershed,
 Massachusetts: Water Resources Research, v. 21, no. 10, p. 1503-1510.
- Garrels, R.M. and Christ, C.L., 1965, Solutions, Minerals, and Equilibria: San Francisco, California, Freeman Cooper and Company, 450 p.
- Garrels, R.M. and Thompson, M.E., 1962, A chemical model for sea water at 25°C and one atmosphere total pressure: American Journal of Science, v. 260, p. 57-66.
- Harned, H.S., and Owen, B.B., 1958, The physical chemistry of electrolytic solutions: New York, Reinhold, 450 p.
- Hem, J.D., 1968, Graphical methods for studies of aqueous aluminum hydroxide, fluoride, and sulfate complexes: U.S. Geological Survey Water-Supply Paper 1827-B, 33 p.

REFERENCES CITED -- Continued

- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3rd ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hooper, R.P., and Shoemaker, C.A., 1985, Aluminum mobilization in an acidic headwater stream: Temporal variation and mineral dissolution disequilibria: Science, v. 229, p. 463-465.
- Johnson, N.M., Driscoll, C.T., Eaton, J.S., Likens, G.E., and McDowell, W.H., 1981, 'Acid rain', dissolved aluminum and chemical weathering at the Hubbard Brook Experimental Forest, New Hampshire: Geochimica et Cosmochimica Acta, 45, 1421-1437.
- Kharaka, Y.K., and Barnes, Ivan, 1973, SOLMENEQ: Solution-mineral equilibrium computations, NTIS #PB215899, 75 p.
- Klotz, I.M., and Rosenberg, R.M., 1972, Chemical thermodynamics: Menlo Park, California, W.A. Benjamin, Incorporated, 444 p.
- LaZerte, Bruce D., 1984, Forms of aqueous aluminum in acidified catchments of central Ontario: A Methodological Analysis: Canadian Journal of Fisheries and Aquatic Science, v. 41, p. 766-776.
- MacInnes, D.A., 1961, The principles of electrochemistry: New York, Dover Publishers, Incorporated, 478 p.
- May, H.M., Helmke, P.A., and Jackson, M.L., 1979, Gibbsite solubility and thermodynamic properties of hydroxy-aluminum ions in aqueous solution at 25°C: Geochimica et Cosmochimica Acta, v. 43, p. 861-868.
- Means, J.L., Yuretich, R.F., Crerar, D.A., Kinsman, D.J.J., and Borcsik, M.P., 1981, Hydrogeochemistry of the New Jersey Pine Barrens: New Jersey Department of Environmental Protection Bulletin 76, 107 p.
- Nordstrom, D.K., compiler, 1979, A comparison of computerized chemical models for equilibrium calculations in aqueous systems, in E.A. Jenne, ed., Chemical modeling in aqueous systems: Washington D.C., American Chemical Society, p. 856-892.
- Nordstrom, D.K., Valentine, S.D., Ball, J.W., Plummer, L.N., and Jones, B.F., 1984, Partial compilation and revision of basic data in the WATEQ programs: U.S. Geological Survey Water-Resources Investigations 84-4186, 40 p.
- Oliver, B.G., Thurman, E.M., and Malcolm, R.L., 1983, The contribution of humic substances to the acidity of colored natural waters: Geochimica et Cosmochimica Acta., v. 47, p. 2031-2035.
- Plummer, L.N., Jones, B.F., and Truesdell, A.H., 1976, WATEQF A FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural waters: U.S. Geological Survey Water-Resources Investigations 76-13, 61 p.

REFERENCES CITED -- Continued

- Reynolds, R.C., Jr., 1978, Polyphenol inhibition of calcite precipitation in Lake Powell: Limnology and Oceanography, v. 23, no. 4, p. 585-597.
- Roberson, C.E., and Hem, J.D., 1969, Solubility of aluminum in the presence of hydroxide, fluoride, and sulphate: U.S. Geological Survey Water Supply Paper 1827-C, 37 p.
- Sato, M., 1960, Oxidation of sulfide ore bodies, 1. Geochemical environments in terms of Eh and pH: Economic Geology, v. 55, p. 928-961.
- Smith, R.M., and Martell, A.E., 1976, Critical stability constants Vol. 4: Inorganic Complexes, New York, Plenum Press, 257 p.
- Stumm, W. and Morgan, J.J., 1981, Aquatic chemistry: An introduction emphasizing chemical equilibria in natural waters (2nd ed.): New York, John Wiley and Sons, Incorporated, 780 p.
- Truesdell, A.H., and Jones, B.F., 1974, WATEQ, a computer program for calculating chemical equilibria of natural waters: Journal of Research U.S. Geological Survey, v. 2, no. 2, p. 233-248.
- Ulrich, Bernhard, Mayer, R., and Khanna, P.K., 1980, Chemical changes due to acid precipitation in a loess-derived soil in central Europe: Soil Science, v. 130, p. 193-199.
- Westall, J.C., Zachary, J.L., and Morel, F.M.M., 1976, MINEQL, A computer program for the calculation of chemical equilibrium of aqueous systems: Technical Note 18, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 91 p.

Attachment A. Sample Input File

' ' 2/19/1986' S-7 3.7000 134,0000 0.0000 124,0000 0.5 290.0000 4.6000 0.1000 0.0100 18.0000 0.0887 1300.0000 1.6000 1.0000 55.0000 2.8000 0.3100 0.0000 0.0031 -0.2E-3 14.0000 10.50 3.9000 2.4791 0. 2. 2. 2. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 3. 0. 2. 0. 0.

Description of Format

- CARD 1 A17,1X,A12,1X,5(G10.4E2,1X) SITE ID,DATE,FIELD PH,FIELD SPECIFIC CONDUCTANCE(UMHOS),LAB PH, LAB SPECIFIC CONDUCT-AND(UMHOS),FIELD TEMPERATURE(DEGREES CELSIUS)
- CARD 2 6(G10.4E2,1X) IRON(UG/L), AMMONIUM(MG/L), CHLORIDE(MG/L),
 FLUORIDE(MG/L), BROMIDE(MG/L), SULFATE(MG/L)
- CARD 3 6(G10.4E2,1X) ALUMINUM(UG/L), CALCIUM(MG/L), MAGNESIUM(MG/L),
 MANGANESE(UG/L), SODIUM(MG/L), POTASSIUM(MG/L)
- CARD 4 5(G10.4E2, 1X) NITRATE(MG/L), PHOSPHATE(MG/L), ALAKLINITY(EQ/L),

 DOC(MG/L), DO(MG/L)
- CARD 5 G10.4E2,4(1x,F1) CONCENTRATION OF ORGANICALLY-BOUND ALUM-INUM(UG/L),FLAG FOR LAB/FIELD DATA(1. OR 2.),FLAG FOR CALCULATION OF ALUMINUM SPECIATION(1. OR 2.),FLAG FOR FLUORIDE INPUT AS [F-] OR TOTAL FLUORIDE(1. OR 2.),FLAG TO INPUT CARD 1-5 DATA IN EQ/L INSTEAD OF MG/L OR UG/L (2. OR 1.).
- CARD 6 17(F1) FLAGS USED TO SIGNAL IMPORTANCE OF INPUT VALUE, IN
 FOLLOWING ORDER: AL,CA,MG,MN,NA,K,FE,NH4,CL,F,BR,SO4,NO3,
 PO4,ALKALINITY,DOC,DO
 (REPEAT CARDS 1-6 FOR REMAINING SAMPLES)

SITE ID = S-7 DATE: 2/19/1986 DATE RUN ON ARCHEM.F77: 4/12/87

PHFLD= 3.700 TEMP= 0.500 PHLAB= 0.000 TEMP= 25.000 SCFLD= 134.000 SCLAB= 124.000

RATIO OF H+ ACTIVITY FIELD TO H+ ACTIVITY LAB= 0.0000 RATIO OF SC FIELD TO SC LAB= 1.08

FIELD DATA WERE USED

INPUT	PARAMETERS			CALCULATED PA	ARAMETERS	
H= CA= MG= NA= K= NH4= CL= F= BR= SO4= NO3= PO4= ALK= DO=	MG/L 1.600 1.000 2.800 0.3100 0.8870E-01 4.600 0.1000 0.1000E-01 18.00 0.0000 0.3100E-02 14.00 10.50	MOLARITY 0.2058E-03 0.3992E-04 0.4113E-04 0.1218E-03 0.7927E-05 0.4918E-05 0.1298E-03 0.5264E-05 0.1251E-06 0.1874E-03 0.0000 0.3264E-072000E-03	EQ/L 0.2058E-03 0.7984E-04 0.8226E-04 0.1218E-03 0.7927E-05 0.4918E-05 0.1298E-03 0.5264E-05 0.1251E-06 0.3748E-03 0.0000 0.9793E-07	ACTIVITY 0.1995E-03 0.3438E-04 0.3590E-04 0.1179E-03 0.7671E-05 0.4758E-05 0.1256E-03 0.1886E-07 0.1211E-06 0.1589E-03 0.0000 0.2440E-07	GAMMA 0.9695 0.8804 0.8825 0.9682 0.9678 0.9678 0.9678 0.9679 0.9678 0.9678 0.7474	1.=< 0. 0. 1. 0. 0. 0. 0. 0. 3. 0.
AL= MN= FE=	UG/L 1300. 55.00 290.0	MOLARITY 0.4829E-04 0.1001E-05 0.5194E-05	EQ/L 0.1449E-03 0.2002E-05 0.1039E-04	ACTIVITY 0.2851E-04 0.8813E-06 0.4573E-05	GAMMA 0.7567 0.8804 0.8804	1.=< 0. 0.

ALL FE ASSIGNED TO +2 VALENCE AS FE+3/FE+2 RATIO COMPUTED BELOW IS LESS THAN 1.

MOLARITIES CALCULATED FROM EQUILIBRIUM SPECIATION EQUATIONS

0.3905E-04 0.4068E-04 0.1808E-03 0.1949E-07 0.5565E-08 0.6111E-11 MG= SO4= F= HF= OH=

SULFATE SPECIES

0.8534E-06 0.4468E-06 CASO4= MGSO4=

CARBONATE SPECIES

CAHCO3= 0.1928E-07 MGHCO3= 0.4829E-08 CO3= 0.1242E-10 HCO3= 0.5358E-04 H2CO3= 0.5361E-01 CACO3= 0.3609E-12 MGCO3= 0.9711E-12

Attachment B. A sample output file. -- Continued

ALUMINUM SPECIES

```
0.3768E-04
AL3+=
                          0.1554E-06
0.1618E-08
ALOH=
ALOH2=
                         0.1618E-08

0.3167E-12

0.1490E-14

0.5238E-05

0.4273E-07

0.1374E-10

0.4814E-22

0.000

0.5119E-05

0.5718E-07
ALOH3=
ALOH4=
ALF=
ALF2=
ALF3=
ALF4=
ALF5=
ALF6=
ALSO4=
ALS042=
```

ION RATIOS FROM ANALYTICAL MOLARITIES=
NA/CL= 0.9386
CA/CL= 0.3076
MG/CL= 0.3170
K/CL= 0.6108E-01
AL/CL= 0.3722
S04/CL= 1.444
CA/MG= 0.9706
S04/N03 = 0.0000
H/S04= 1.065
H/N03= 0.0000
H/S04+N03)= 0.0000 H/(SO4+NO3) = 0.0000

ION RATIOS FROM COMPUTED MOLARITIES CA/CL= 0.3009 MG/CL= 0.3135 SO4/CL= 1.394 AL/CL= 0.2904

FE+3/FE+2= PE= 6. 0.6368E-06 6.814

RATIO (LOG ACTIVITY AL3+)/(LOG ACTIVITY OF H+)= 1.228

RECALCULATED TOTAL ALUMINUM, MOLES/L = 0.4830E-04 SATURATION INDEX FOR BASIC ALUMINUM SULFATE= 0.4550E-02

ORGANIC ANION CONC, EQ/L = 0.6549E-04

MEASURED ALKALINITY, EQ/L = -.2000E-03 NEWALK, ALKALINITY CALCULATED FROM Cb-Ca= -.1970E-03

IONIC STRENGTH= 0.8978E-03

SUM CATION EQ/L = 0.6587E-03SUM ANION EQ/L = 0.5703E-03ANALYTICAL PERCENT DIFFERENCE IN CATIONS VS ANIONS=

*** FAILS IONBAL AT 5% ***

SUM OF CATIONS= 0.6257E-03 SUM OF ANIONS= 0.6108E-03 COMPUTED PERCENT DIFFERENCE IN CATIONS VS ANIONS= 1.206

PREDICTED SC = 125.997
PERCENT DIFFERENCE IN SC MEASURED VS PREDICTED= 3.078

Attachment C. Source code.

(Copies of this source code on diskette can be purchased from the address given in the front of the book)

```
C
       ARCHEM.F77, A FORTRAN 77 PROGRAM WRITTEN BY P.A. JOHNSSON, WITH
                                                                                 1
C
       D.G.LORD AT THE U.S. GEOL. SURVEY WRD TRENTON, NJ. THIS PROGRAM
                                                                                 5
C
       TAKES CHEMICAL DATA IN MG/L AND UG/L AND CALCULATES MOLARITIES,
       EQ/L, ORGANIC ANION CONCENTRATION, IONIC STRENGTH, CATION/ANION
                                                                                 4
C
                                                                                 5
C
       BALANCE, AND PREDICTED SPECIFIC CONDUCTANCE.
C
       CALCULATION OF ALUMINUM SPECIATION IS OPTIONAL.
                                                                                 6
                                                                                 7
C
       ARCHEM. F77 WAS SPECIFICALLY FORMULATED FOR USE WITH LOW-PH. LOW
                                                                                 8
C
       IONIC STRENGTH, ORGANIC-RICH WATERS, AS OCCUR IN THE NEW JERSEY
С
                                                                                 9
       PINELANDS.
C
       PLEASE NOTE THAT THE CHEMICAL DATA MAY ALSO BE INPUT AS UEQ/L.
                                                                                10
С
       SEE EOGRAM(M), BELOW, AND LOOP FOLLOWING READ STATEMENTS.
                                                                                11
C
       SAMPLE INPUT FILE:
                                                                                12
C
       CARD 1 A17,1X,A12,1X,5(G10.4E2,1X) SITE ID,DATE,FIELD PH,FIELD
                                                                                13
C
               SPECIFIC CONDUCTANCE (UMHOS), LAB PH, LAB SPECIFIC CONDUCT-
                                                                                14
C
                                                                                15
               AND(UMHOS), FIELD TEMPERATURE(DEGREES CELSIUS)
C
       CARD 2
               6(G10.4E2,1X) IRON(UG/L), AMMONIUM(MG/L), CHLORIDE(MG/L),
                                                                                16
С
               FLUORIDE(MG/L), BROMIDE(MG/L), SULFATE(MG/L)
                                                                                17
C
              6(G10.4E2,1X) ALUMINUM(UG/L), CALCIUM(MG/L), MAGNESIUM(MG/L),
       CARD 3
                                                                                18
C
               MANGANESE(UG/L), SODIUM(MG/L), POTASSIUM(MG/L)
                                                                                19
C
               5(G10.4E2,1X) NITRATE(MG/L), PHOSPHATE(MG/L), ALAKLINITY(EQ/L),
                                                                                20
       CARD 4
C
               DOC(MG/L), DO(MG/L)
                                                                                21
С
       CARD 5
              G10.4E2.4(1X.F1) CONCENTRATION OF ORGANICALLY-BOUND ALUM-
                                                                                22
С
               INUM(UG/L), FLAG FOR LAB/FIELD DATA(1. OR 2.), FLAG FOR
                                                                                23
С
               CALCULATION OF ALUMINUM SPECIATION(1. OR 2.), FLAG FOR
                                                                                24
С
               FLUORIDE INPUT AS [F-] OR TOTAL FLUORIDE, FLAG FOR INPUT
                                                                                25
С
               AS MILLIGRAMS OR MICROEQUIVALENTS PER LITER (1. OR 2.).
                                                                                26
C
              17(F1) FLAGS USED TO SIGNAL IMPORTANCE OF INPUT VALUE, IN
                                                                                27
       CARD 6
C
               FOLLOWING ORDER: AL, CA, MG, MN, NA, K, FE, NH4, CL, F, BR, SO4, NO3,
                                                                                28
С
               PO4, ALKALINITY, DOC, DO
                                                                                29
С
                                                                                30
С
               (REPEAT CARDS 1-6 FOR REMAINING SAMPLES)
                                                                                31
С
                                                                                32
C
       **********************
                                                                                33
С
       PARAMETER STATEMENT -- CHANGE M MANUALLY TO ALTER MAXIMUM
                                                                                34
      NUMBER OF SAMPLES THAT CAN BE RUN AT ONE TIME. PRESENT MAXIMUM
C
                                                                                35
C
                                                                                36
C
       **********************
                                                                                37
       PARAMETER (M = 50)
                                                                                38
C
       **********************
                                                                                39
                                                                                40
C
C.....INPUT FLAGS FOR LESS THAN VALUES (CARD 6 DATA)
                                                                                41
      REAL AZ1(M), AZ2(M), AZ3(M), AZ4(M), AZ5(M), AZ6(M), AZ7(M),
                                                                                42
                                                                                43
     *
             AZ8(M), AZ9(M), AZ10(M), AZ11(M), AZ12(M), AZ13(M), AZ14(M),
             AZ15(M), AZ16(M), AZ17(M)
                                                                                44
```

CINPUT PARAMETERS, IN MG/L	45
REAL $TCA(M)$, $TMG(M)$, $TSO4(M)$, $NO3(M)$, $NH4(M)$, $NA(M)$, $K(M)$, $CL(M)$,	46
* $BR(M), F(M), DOC(M), PO4(M)$	47
CINPUT PARAMETERS, IN UG/L	48
REAL FE(M), MN(M), AL(M)	49
C	50
CINPUT PARAMETERS, IN EQ/L	51
REAL ALK1(M)	52
C	53
COTHER INPUT PARAMETERS DISSOLVED OXYGEN, FIELD SPECIFIC	54
CCONDUCTANCE, LAB SPECIFIC CONDUCTANCE, FIELD PH, LAB PH,	55
C FIELD TEMPERATURE (DEC CELSIUS)	5 6
C CTEMP2 IS LAB TEMPERATURE AND IS AUTOMATICALLY PUT IN BY	57
C ARCHEM AS 25 DEGREES CELSIUS.	58
REAL DO(M), SCFLD(M), SCLAB(M), PH(M), PH2(M), CTEMP(M),	59
* CTEMP2, SI (M)	60
CCHARACTER INPUT SITE (17 CHARACTERS), DATE (12 CHARACTERS).	61
CINPUT SHOULD INCLUDE SINGLE QUOTES.	62
CHARACTER*17 SITE(M)	63
CHARACTER*17 SITE(M) CHARACTER*12 DATE(M)	64
CCHARACTER INPUT CALLED FOR BY PROMPT. NAME OF INPUT FILE HAS	65
C TEN CHARACTERS, NAME OF OUTPUT FILE HAS TEN CHARACTERS, TODAY'S	66
C DATE HAS 12 CHARACTERS. NO SINGLE QUOTES NEEDED.	67
CHARACTER INFILE*10, OUTFILE*10, TODAY*12	68
CCALCULATED SPECIES, MOLARITIES	69
REAL OH, CO3, ORG, HCO3, CA, MG, SO4, CASO4, MGSO4, CAHCO3, MGHCO3,	70
* H2CO3, CACO3, MGCO3, HF	70
CA PARAMETERS ARE ACTIVITIES. ACTIVITIES OF UNCHARGED SPECIES ARE	72
C TAKEN AS EQUAL TO 1.	73
REAL ACA, AMG, ASO4, ANO3, ANH4, ANA, AK, ACL, ABR, AF, APO4,	74
* AFE,AMN,AAL,ACO3,AHCO3,AOH	75
CZ PARAMETERS ARE MOLARITIES	75 76
REAL TCAZ, TMGZ, TSO4Z, NO3Z, NH4Z, NAZ, KZ, CLZ, BRZ, FZ, DOCZ, PO4Z,	70
	78
	76 79
CE PARAMETERS ARE EQ/L (FOR DI- AND TRI-VALENT SPECIES).	80
REAL CAE, MGE, SO4E, PO4E, FEE, MNE, ALE	81
CE2 PARAMETERS ARE UEQ/L	82
REAL CAE2, MGE2, SO4E2, NO3E2, NH4E2, NAE2, KE2, CLE2, BRE2, FE2,	
* PO4E2, FEE2, MNE2, ALE2, OHE2, ORGE2,	83
* EF	84
CG PARAMETERS ARE ACTIVITY COEFFICIENTS, GAMMAS	85
REAL GCA, GMG, GSO4, GHCO3, GCAHCO3, GMGHCO3, GOH, GH, GAL, GMN,	86
* GFE, GPO4, GNA, GF, GK, GCL, GBR, GNO3, GNH4	87
CSC PARAMETERS ARE EQUIVALENT CONDUCTANCES	88
REAL SCCA, SCMG, SCH, SCNA, SCK, SCCAHCO3, SCMGHCO3, SCCO3, SCHCO3,	89
* SCOH, SCCL, SCSO4, SCNH4, SCNO3, SCBR	90

CK VALUES ARE EQUILIBRIUM EXPRESSIONS CORRECTED FOR TEMPERATURE.	91
REAL K1,K2,K3,K4,K5,K6,KW,K9,K10	92
CVALUES FOR ORGANIC ANION CALCULATION	93
REAL PK, KBAR, CBAR	94
C	95
CPARAMETERS FOR REDOX IRON CALCULATIONS (FROM STUMM AND	96
C MORGAN)	97
REAL PO2, PE, FER, FEV2, FE3	98
CNEWALK IS THE ALKALINITY CALCULATED FROM THE ALTERNATIVE	99
CEQUATION FOR ALKALINITY:	100
C ALK = Cb-Ca	101
C WHERE Cb= 2*CA + 2*MG + NA + K + NH4	102
C AND $Ca = NO3 + 2*SO4 + CL + F$	103
C THE VALUE OF NEWALK CAN BE COMPARED TO THE MEASURED	104
C VALUE OF ALKALINITY.	105
REAL NEWALK	106
CVALUES FOR SPECIFIC CONDUCTANCE CALCULATION	107
REAL SCT, SC25, SC25T, SCDIF	108
CVARIOUS CONSTANTS	109
REAL A,B,C,D,Z,KTEMP	110
REAL A,B,C,D,Z,KTEMP CVALUES FOR LOOP	111
REAL L, MSO4, GMSO4, T, FZ2, FZM	112
CIONIC STRENGTH	113
REAL MU, MU2, MUF CION BALANCE	114
CION BALANCE	115
REAL CAT2, AN2, CATAN2, CAT, AN, CATAN	116
CR VALUES ARE ANALYTICAL ION RATIOS OF MOLARITIES	117
REAL RCA, RMG, RNA, RK, RAL, RSO4, RSO4NO3, RHSO4, RHNO3, RHSN	118
CR2 VALUES ARE COMPUTED ION RATIOS OF MOLARITIES	119
REAL R2CA,R2MG,R2AL,R2SO4 CVALUE OF LOG (ACTIVITY AL3+)/LOG(ACTIVITY H+)	120
CVALUE OF LOG (ACTIVITY AL3+)/LOG(ACTIVITY H+)	121
REAL LRAL	122
CRATIO OF TDS TO SC.	123
REAL TDSRAT	124
CVALUES FOR LAB VERSUS FIELD DATA	125
REAL RATPH, RATSC, RPH1, RPH2	126
CFLAG FOR USE OF LAB OR FIELD DATA	127
CINPUT I=1. USES LAB DATA. INPUT I = 2.	128
CUSES FIELD DATA.	129
REAL LFI(M)	130
CFLAG FOR FLUORIDE INPUT. FI(M) = 1. FOR ION-SPECIFIC ELECTRODE	131
CVALUE, WHERE FLUORIDE = {F-}. FI(M) = 2. FOR FLUORIDE = TOTAL	132
CDISSOLVED FLUORIDE.	133
REAL FI(M)	134

```
C.....FLAG ALSP CALCULATES ALUMINUM SPECIATION. USE THIS OPTION
                                                                                 135
C....ONLY WHEN TEMP - 25 DEG C. IF YOU HAVE DATA FOR ORGANICALLY
                                                                                 136
C.....BOUND ALUMINUM, INPUT THIS CONCENTRATION AS ORGAL. THIS VALUE IS
                                                                                 137
C.....SUBTRACTED FROM TOTAL ALUMINUM IN THE SUBSEQUENT CALCULATIONS.
                                                                                 138
C.....ALSP - 1. TO DELETE ALUMINUM SPECIATION. ALSP - 2. TO CALCULATE
                                                                                 139
C.....ALUMINUM SPECIATION.
                                                                                 140
       REAL ALSP(M)
                                                                                 141
       REAL ORGAL(M)
                                                                                 142
C.....FLAG FOR INPUT AS MILLIGRAMS PER LITER (1.) OR MICROEQUIVALENTS
                                                                                 143
C..... PER LITER (2.)
                                                                                 144
      REAL EQGRAM(M)
                                                                                 145
C.....MOLARITIES OF ALUMINUM SPECIES (AL3 IS ACTIVITY)
                                                                                 146
       REAL AL3, ALOH, ALOH2, ALOH3, ALOH4, ALF, ALF2, ALF3, ALF4, ALF5, ALF6,
                                                                                 147
              ALSO4, ALSO42, TAL, AL3M
                                                                                 148
C.....ACTIVITY COEFFICIENTS FOR ALUMINUM SPECIES. TAKEN AS THE
                                                                                 149
C.....AVERAGE VALUE FOR MONO-, DI-, AND TRI- VALENT SPECIES IN
                                                                                 150
C.....SOLUTION, AS IN JOHNSON ET. AL., 1981.
                                                                                 151
      REAL G1.G2.G3
                                                                                 152
C.....EQUIVALENTS/LITER OF ALUMINUM SPECIES
                                                                                 153
       REAL AL3E, ALOHE, ALOH2E, ALOH4E, ALFE, ALF2E, ALF3E, ALF4E, ALF5E.
                                                                                 154
              ALF6E, ALS04E, ALS042E, ALOH3E
                                                                                 155
C.....SATURATION INDEX FOR BASIC ALUMINUM SULFATE (ALOHSO4)
                                                                                 156
       REAL ALSULF
                                                                                 157
C.....VALUES OF EQUILIBRIUM CONSTANTS FOR ALUMINUM SPECIATION EQNS.,
                                                                                 158
C.....AT 25C. VALUES FROM HEM. 1968: BEHR AND WENDT. 1962.
                                                                                 159
C....OR MAY ET. AL., 1968.
                                                                                 160
C.....KSO IS FOR NATURAL GIBBSITE (MAY, ET AL., 1979)
                                                                                 161
       REAL KOH1, KOH2, KOH3, KOH4, KF1, KF2, KF3, KF4, KF5, KF6, KS1, KS2, KS0
                                                                                 162
       REAL DOH1, DOH4, DF1, DF2, DF3, DF4, DF5, DS1, DS2
                                                                                 163
       DATA KOH1/1.02E-05/.
                                                                                 164
     *
            KOH2/7.41E-11/
                                                                                 165
            KOH3/1.74E-17/.
     *
                                                                                 166
            KOH4/6.92E-23/.
     *
                                                                                 167
            KF1/1.023E+07/,
                                                                                 168
     ×
            KF2/5.62E+12/,
                                                                                 169
            KF3/1.047E+17/
                                                                                 170
            KF4/5.25E+19/.
     *
                                                                                 171
            KF5/8.32E+20/.
     *
                                                                                 172
     *
            KF6/7.49E+20/.
                                                                                 173
     *
            KS1/1.58E+03/,
                                                                                 174
            KS2/1.26E+05/
                                                                                 175
            KSO/5.89E+08/
                                                                                 176
C.....VALUES OF DELTA H FOR AL-FLOURIDE SPECIES ARE FROM SMITH AND
                                                                                 177
       MARTELL, 1976. VALUES FOR ALUMINUM SULFATE SPECIES ARE
                                                                                 178
С
       FROM IZATT ET. AL., 1969. VALUES FOR ALUMINUM HYDROXIDES
                                                                                 179
C
C
       ARE FROM NORDSTROM ET. AL., 1984 OR PLUMMER ET. AL., 1976.
                                                                                 180
```

```
DATA DOH1/14.775/,
                                                                                181
            DOH2/22.0/,
                                                                                182
                                                                                183
     *
            DOH3/33.0/,
     *
            DOH4/42.22/,
                                                                                184
     *
                                                                                185
            DF1/1.100/.
     *
            DF2/2.000/,
                                                                                186
     *
            DF3/2.500/,
                                                                                187
     *
            DF4/2.200/.
                                                                                188
     *
            DF5/1.800/,
                                                                                189
     *
            DF6/0.10/.
                                                                                190
                                                                                191
     *
            DS1/2.290/,
            DS2/3.070/
                                                                                192
       CTEMP2 = 25.
                                                                                193
       ************************
С
                                                                                194
C
       THIS PORTION OF THE PROGRAM READS IN DATA FROM KEYBOARD AND FILES.
                                                                                195
       ************************
                                                                                196
C.....PROMPT FOR TODAY'S DATE, NAME OF INPUT FILE, NAME OF OUTPUT FILE
                                                                                197
       PRINT*, 'WELCOME TO ARCHEM. F77. PLEASE TYPE IN THE DATE'
                                                                                198
       READ '(A)', TODAY
                                                                                199
       PRINT*, 'TYPE IN NAME OF INPUT FILE'
                                                                                200
       READ '(A)', INFILE
                                                                                201
       PRINT*, 'TYPE IN NAME OF OUTPUT FILE'
                                                                                202
       READ '(A)', OUTFILE
                                                                                203
       PRINT*, 'TYPE IN NUMBER OF DATA FILES (UP TO 50)'
                                                                                204
       READ (1,*) NDAT
                                                                                205
       OPEN (20, FILE-INFILE)
                                                                                206
       OPEN (61, FILE=OUTFILE)
                                                                                207
       DO 500 IL = 1,NDAT
                                                                                208
C
       READS DATA FROM INPUT FILE, CARDS 1-6 AS DESCRIBED ABOVE
                                                                                209
       READ (20,*)SITE(IL),DATE(IL),PH(IL),SCFLD(IL),
                                                                                210
     * PH2(IL), SCLAB(IL), CTEMP(IL), FE(IL), NH4(IL), CL(IL), F(IL),
                                                                                211
     * BR(IL), TSO4(IL), AL(IL), TCA(IL), TMG(IL), MN(IL), NA(IL), K(IL),
                                                                                212
     * NO3(IL), PO4(IL), ALK1(IL), DOC(IL), DO(IL)
                                                                                213
       READ(20,*) ORGAL(IL), LFI(IL), ALSP(IL), FI(IL), EQGRAM(IL)
                                                                                214
       READ (20,*)AZ1(IL),AZ2(IL),AZ3(IL),AZ4(IL),AZ5(IL),
                                                                                215
     * AZ6(IL), AZ7(IL), AZ8(IL), AZ9(IL), AZ10(IL), AZ11(IL),
                                                                                216
     * AZ12(IL), AZ13(IL), AZ14(IL), AZ15(IL), AZ16(IL), AZ17(IL)
                                                                                217
С
     ************************
                                                                                218
С
       CHANGE FOR INPUTTING DATA AS UEQ/LITER. NOTE FE IS
                                                                                219
C
       ASSUMED TO BE AS FE+3 IN DATA SET.
                                                                                220
       IF (EQGRAM(IL) .EQ. 2.) THEN
                                                                                221
         FE(IL) = FE(IL)/.05372
                                                                                222
         NH4(IL) = NH4(IL)*,001/.05544
                                                                                223
                                                                                224
          CL(IL) = CL(IL) * .001 / .02821
          F(IL) = F(IL) * .001 / .05264
                                                                                225
         BR(IL) = BR(IL)*.001/.01251
                                                                                226
```

```
TSO4(IL) = TSO4(IL)*.001/.02082
                                                                                    227
                                                                                    228
          AL(IL) = AL(IL)/.11119
          TCA(IL) = TCA(IL)*0.001/.04990
                                                                                    229
          TMG(IL) = TMG(IL) * .001 / .08226
                                                                                    230
          MN(IL) = MN(IL)/.03640
                                                                                    231
          NA(IL) = NA(IL)*.001/.04350
                                                                                    232
          K(IL) = K(IL) * .001 / .02557
                                                                                    233
          NO3(IL) = NO3(IL) * .001 / .01613
                                                                                    234
          PO4(IL) = PO4(IL)*.001/.03159
                                                                                    235
                                                                                    236
          ELSE
          CONTINUE
                                                                                    237
       END IF
                                                                                    238
C.....COMPUTATION OF RATIOS: 1) HYDROGEN ION FROM FIELD DATA OVER
                                                                                    239
       HYDROGEN ION FROM LAB DATA AND 2) SCFIELD VERSUS SCLAB.
                                                                                    240
       IF (PH(IL) .GT. O. .AND. PH2(IL) .GT. O.) THEN
                                                                                    241
          RPH1 = 10.**(-(PH(IL)))
                                                                                    242
          RPH2 = 10.**(-(PH2(IL)))
                                                                                    243
          RATPH = RPH1/RPH2
                                                                                    244
          ELSE
                                                                                    245
          CONTINUE
                                                                                    246
       END IF
                                                                                    247
          RATSC = SCFLD(IL)/SCLAB(IL)
                                                                                    248
                                                                                    249
       CTEMP2 = 25.
       WRITE (61,1) SITE(IL), DATE(IL), TODAY
                                                                                    250
       WRITE (61,2) PH(IL), CTEMP(IL), SCFLD(IL)
                                                                                    251
       WRITE (61,3) PH2(IL), CTEMP2, SCLAB(IL)
                                                                                    252
       IF (LFI(IL) .EQ. 2.) THEN
                                                                                    253
          SCLAB(IL) = SCFLD(IL)
                                                                                    254
          CTEMP2 = CTEMP(IL)
                                                                                    255
          PH2(IL) = PH(IL)
                                                                                    256
       END IF
                                                                                    257
       IF (PH2(IL) .GE. 10.0) THEN
                                                                                    258
          WRITE (61,4)
                                                                                    259
          WRITE (*,4)
                                                                                    260
       END IF
                                                                                    261
       IF (CTEMP2 .LE. .1 .OR. CTEMP2 .GE. 100.0) THEN
                                                                                    262
          WRITE (61,5)
                                                                                    263
          WRITE (*,5)
                                                                                    264
       END IF
                                                                                    265
       WRITE(61.6) RATPH.RATSC
                                                                                    266
C.....CALCULATES TDS/S.C RATIO
                                                                                    267
       TDSRAT = ((.001*AL(IL)) + TCA(IL) + TMG(IL) + (.001*MN(IL)) + NA(IL) + K(IL)
                                                                                    268
     * +(.001*FE(IL))+NH4(IL)+CL(IL)+F(IL)+BR(IL)+TSO4(IL)+NO3(IL)+
                                                                                    269
     * PO4(IL)+DOC(IL)+DO(IL))/SCLAB(IL)
                                                                                    270
```

```
C.....CALCULATES VALUES OF FE+2 AND FE+3 FROM REDOX (STUMM AND MORGAN)
                                                                                   271
       IF (DO(IL) .NE. O.) THEN
                                                                                    272
          PO2 = DO(IL)/32000
                                                                                    273
          PE = 11.385 - PH2(IL) + (.25*LOG10(PO2))
                                                                                   274
          FER = 10.**(PE-13.01)
                                                                                    275
          ELSE
                                                                                    276
          PE = 0.
                                                                                    277
          FER = 1.
                                                                                    278
       END IF
                                                                                    279
C.....Z PARAMETERS ARE MOLARITIES
                                                                                   280
C.....CONVERSION FACTORS ARE FROM USGS WATER SUPPLY PAPER 1473
                                                                                   281
       PO4Z = PO4(IL)*.001*.01053
                                                                                    282
       DOCZ = DOC(IL)
                                                                                    283
       TCAZ = TCA(IL)*.001*.02495
                                                                                    284
       TMGZ = TMG(IL)*.001*.04113
                                                                                    285
       TSO4Z = TSO4(IL)*.001*.01041
                                                                                    286
       NAZ = .001*NA(IL)*.04350
                                                                                    287
       CLZ = .001*CL(IL)*.02821
                                                                                    288
       NO3Z = .001*NO3(IL)*.01613
                                                                                    289
       FZ = .001*F(IL)*.05264
                                                                                    290
       FZ2 - FZ
                                                                                    291
       MNZ = MN(IL)*.001*.01820*.001
                                                                                    292
       KZ = K(IL)*.001*.02557
                                                                                    293
       BRZ = .001*BR(IL)*.01251
                                                                                    294
       ALKZ = ALK1(IL)
                                                                                    295
       FEZ = FE(IL) * .001 * .01791 * .001
                                                                                    296
       ALZ = AL(IL)*.001*.03715*.001
                                                                                    297
       NH4Z = NH4(IL)*.001*.05544
                                                                                    298
       ORGAL(IL) = ORGAL(IL)*.001*.03715*.001
                                                                                    299
C....E PARAMETERS ARE EQ/LI
                                                                                    300
       ALE = ALZ*3.
                                                                                    301
       MNE = MNZ*2.
                                                                                    302
       IF (FER .GE. 1.) THEN
                                                                                    303
          FEE = FEZ*3.
                                                                                    304
          ELSE
                                                                                    305
          FEE = FEZ*2.
                                                                                    306
       END IF
                                                                                    307
       CAE = TCAZ * 2.
                                                                                    308
       MGE = TMGZ*2.
                                                                                    309
       SO4E = TSO4Z*2.
                                                                                    310
       PO4E = PO4Z*3.
                                                                                   311
C.....SETS TEMPERATURE-DEPENDENT EQM. CONSTANTS. THERMODYNAMIC
                                                                                    312
C.....DATA FROM TRUESDELL AND JONES, 1974.
                                                                                    313
       KTEMP = CTEMP2 + 273.15
                                                                                    314
       C = ((1/KTEMP) - (3.35D-3))
                                                                                    315
```

```
D = (1.9D-3)*2.303
                                                                                     316
       K1 = (4.909D-3)*(10.**((1.65/D)*C))
                                                                                     317
       K2 = (5.495*10.**(-2.))*(10.**((6.331/D)*C))
                                                                                     318
       K3 = (5.8*10.**(-3.))*(10.**((4.92/D)*C))
                                                                                     319
       K4 = (1.2*10.**(-1.))*(10.**((10.37/D)*C))
                                                                                     320
       K5 = (6.3*10.**(-4.))*(10.**((3.13/D)*C))
                                                                                    321
       K6 = (3.999*10.**(-4.))*(10.**((.058/D)*C))
                                                                                    322
       KW = (1.0*10.**(-14.))*(10.**((-13.345/D)*C))
                                                                                    323
       K9 = (4.677*10.**(-11.))*(10.**((-3.55/D)*C))
                                                                                    324
       K10=(4.2*10.**(-7.))*(10.**((-1.976/D)*C))
                                                                                    325
       C = (3.35D-3)-(1/KTEMP)
                                                                                     326
       KOH1 = KOH1*(10.**((DOH1/D)*C))
                                                                                    327
       KOH2 = KOH2*(10.**((DOH2/D)*C))
                                                                                    328
       KOH3 = KOH3*(10.**((DOH3/D)*C))
                                                                                    329
       KOH4 = KOH4*(10.**((DOH4/D)*C))
                                                                                    330
       KF1 = KF1*(10.**((DF1/D)*C))
                                                                                    331
       KF2 = KF2*(10.**((DF2/D)*C))
                                                                                    332
       KF3 = KF3*(10.**((DF3/D)*C))
                                                                                     333
       KF4 = KF4*(10.**((DF4/D)*C))
                                                                                    334
       KF5 = KF5*(10.**((DF5/D)*C))
                                                                                     335
       KS1 = KS1*(10.**((DS1/D)*C))
                                                                                     336
       KS2 = KS2*(10.**((DS2/D)*C))
                                                                                     337
       HCO3 = ALKZ
                                                                                     338
C.....SETS ACTIVITY COEFFICIENTS TO 1
                                                                                     339
       GH = 1.
                                                                                     340
       GOH = 1.
                                                                                     341
       GSO4 = 1.
                                                                                     342
       GCA = 1.
                                                                                     343
       GMG = 1.
                                                                                     344
       GCO3 = 1.
                                                                                     345
       GHCO3 = 1.
                                                                                     346
       GCAHCO3 = 1.
                                                                                     347
       GMGHCO3 = 1.
                                                                                     348
       GF = 1.
                                                                                     349
       GAL = 1.
                                                                                     350
       GMN = 1.
                                                                                     351
       GFE = 1.
                                                                                     352
       GPO4 = 1.
                                                                                     353
       GNA = 1.
                                                                                     354
       GK = 1.
                                                                                     355
       GCL = 1.
                                                                                     356
       GBR = 1.
                                                                                     357
       GNO3 = 1.
                                                                                     358
       GNH4 = 1.
                                                                                     359
C
       INITIALIZES [SO4] AS .1 X TSO4
                                                                                     360
       L = 1.*(10.**(-1.))
                                                                                     361
        SO4 = L*TSO4Z
                                                                                     362
```

```
C
       INITIALIZES HYDROGEN, HYDROXIDE, AND CARBONATE CONCENTRATIONS
                                                                                  363
   63 HY = (10.**(-PH2(IL)))/GH
                                                                                  364
       H = HY*GH
                                                                                  365
       HE2 = H*1000.*1000.
                                                                                  366
       CO3 = K9*GHCO3*HCO3/(HY*GH*GCO3)
                                                                                  367
       OH = KW/(HY*GH*GOH)
                                                                                  368
       OHE2 = OH*1000.*1000.
                                                                                  369
C.....CALCULATES ORGANIC ANION(ORG) CONC.
                                                                                  370
C.....EQUATIONS FROM OLIVER, ET. AL., 1983.
                                                                                  371
       TO CHANGE THE CONVERSION FACTOR FROM 10 UEG/MG DOC TO
                                                                                  372
C
       A VALUE APPROPRIATE FOR YOUR PARTICULAR WATERS.
                                                                                  373
C
       REPLACE THE 10. IN THE CBAR = LINE WITH THIS VALUE.
                                                                                  374
       PK = .96 + (.9*PH2(IL)) - (.039*(PH2(IL)**2.))
                                                                                  375
       KBAR = 10.**(-PK)
                                                                                  376
       CBAR = DOCZ*(10.*(1.E-6))
                                                                                  377
       ORG = (KBAR*CBAR)/(KBAR + H)
                                                                                  378
       ORGE2 = ORG*(10,**6)
                                                                                  379
                                                                                  380
C*****LOOP TO CALCULATE IONIC STRENGTH AND CARBONATE SPECIES
                                                                                  381
                                                                                  382
C
       A AND B ARE FACTORS USED IN THE DEBYE-HUCKEL EQUATION.
                                                                                  383
       A = (.00082*((Ctemp2)-5.))+.4921
                                                                                  384
       B=(.3241+(.0008*(ctemp2/5.)))*(10.**(-8))
                                                                                  385
       CA = TCAZ/(1.+(GCA*GSO4*SO4/K1)+(GHCO3*HCO3*GCA/(K2*GCAHCO3))+
                                                                                  386
     * (GCA*GCO3*CO3/K5))
                                                                                  387
       MG = TMGZ/(1.+(GMG*GSO4*SO4/K3)+(GHCO3*HCO3*GMG/(K4*GMGHCO3))+
                                                                                  388
     * (GMG*GCO3*CO3/K6))
                                                                                  389
       CASO4 = (CA*GCA*GSO4*SO4)/K1
                                                                                  390
       MGSO4 = (MG*GMG*GSO4*SO4)/K3
                                                                                  391
       CAHCO3 = (CA*GCA*GHCO3*HCO3)/(K2*GCAHCO3)
                                                                                  392
       MGHCO3 = (MG*HCO3*GMG*GHCO3)/(K4*GMGHCO3)
                                                                                  393
       CACO3 = GCA*CA*GCO3*CO3/K5
                                                                                  394
       MGCO3 = GMG*MG*GCO3*CO3/K6
                                                                                  395
C....OPTIONAL AL SPECIATION CALCULATIONS
                                                                                  396
       IF (ALSP(IL) .EQ. 2.) THEN
                                                                                  397
          G1 = (GH+GNA+GK+GNH4+GCL+GF+GBR+GNO3)/8.
                                                                                  398
                                                                                  399
          G2 = (GCA+GMG+GSO4+GMN)/4.
          G3 = (GPO4+GAL)/2.
                                                                                  400
          AL3 = (ALZ-(ORGAL(IL)))/((1./GAL)+(KOH1/(GH*HY*G2))+
                                                                                  401
          (KOH2/(GH*GH*HY*HY*G1)) + (KOH3/(GH*GH*GH*HY*HY*HY))+
     *
                                                                                  402
     *
          (KOH4/(HY*HY*HY*HY*GH*GH*GH*G1))+(FZ*GF*KF1/G2)+
                                                                                 403
          (FZ*FZ*GF*GF*KF2/G1)+(FZ*FZ*FZ*GF*GF*KF3) + (FZ*FZ*FZ*FZ*
                                                                                 404
          GF*GF*GF*GF*KF4/G1)+(FZ*FZ*FZ*FZ*FZ*GF*GF*GF*GF*GF*KF5/G2)
                                                                                  405
     *
          + ((FZ**6)*(GF**6)*KF6/G3)+(SO4*GSO4*KS1/G1)+
                                                                                  406
          ((SO4**2)*(GSO4**2)*(KS2/G1)))
                                                                                  407
```

```
AL3M = AL3/GAL
                                                                                   408
            ALOH = (AL3*KOH1)/(HY*GH*G2)
                                                                                   409
            ALOH2 = (AL3*KOH2)/(HY*HY*GH*GH*G1)
                                                                                   410
            ALOH3 = (AL3*KOH3)/(HY*HY*HY*GH*GH*GH)
                                                                                   411
            ALOH4 = (AL3*KOH4)/((HY**4.)*(GH**4.)*G1)
                                                                                   412
            ALF = (AL3*FZ*GF*KF1)/G2
                                                                                   413
            ALF2 = (AL3*FZ*FZ*GF*GF*KF2)/G1
                                                                                   414
            ALF3 = (AL3*FZ*FZ*FZ*GF*GF*KF3)
                                                                                   415
            ALF4 = (AL3*FZ*FZ*FZ*FZ*GF*GF*GF*KF4)/G1
                                                                                   416
            ALF5 = (AL3*FZ*FZ*FZ*FZ*FZ*GF*GF*GF*GF*KF5)/G2
                                                                                   417
            ALF6 = (AL3*(FZ**6.)*(GF**6.)*KF6)/G3
                                                                                   418
            ALSO4 = (AL3*SO4*GSO4*KS1)/G1
                                                                                   419
            ALSO42 = (AL3*SO4*SO4*GSO4*GSO4*KS2)/G1
                                                                                   420
C
           RECALCULATES [F-]
                                                                                   421
                                                                                   422
           IF (FI(IL) .EQ. 2.) THEN
             FZM = FZ2/(1.+(AL3*GF*KF1/G2)+(H*GF/(10.**(-3.17))))
                                                                                   423
             HF = H*GF*FZ/(10.**(-3.17))
                                                                                   424
             FZ = FZM
                                                                                   425
             FZM = FZM+HF+ALF+(2.*ALF2)+(3.*ALF3)+(4.*ALF4)+(5.*ALF5)+
                                                                                   426
     *
             (6.*ALF6)
                                                                                   427
                                                                                   428
             ELSE
             FZ = FZ
                                                                                   429
           END IF
                                                                                   430
   65
         TAL =AL3M+AL0H+AL0H2+AL0H3+AL0H4+ALF+ALF2+ALF3+ALF4+ALF5+ALF6+
                                                                                   431
         ALSO4+ALSO42
                                                                                   432
         ELSE
                                                                                   433
         CONTINUE
                                                                                   434
       END IF
                                                                                   435
       CALCULATES IONIC STRENGTH
С
                                                                                   436
       MU=.5*((CA*4.)+(MG*4.)+(CO3*4.)+SO4*4.+CAHCO3+MGHCO3+FZ+PO4Z*9.+
                                                                                   437
     * HCO3)
                                                                                   438
       IF (FER .GE. 1.) THEN
                                                                                   439
          MU = MU + (FEZ * 9.)
                                                                                   440
          ELSE
                                                                                   441
          MU = MU + (FEZ*4.)
                                                                                   442
                                                                                   443
       MU2=MU+0.5*(BRZ+NAZ+(MNZ*4.)+KZ+HY+OH+NO3Z+NH4Z+CLZ+ORG)
                                                                                   444
       IF (ALSP(IL) .EQ. 1. ) THEN
                                                                                   445
          MU2 = MU2 + (.05*(ALZ*9.))
                                                                                   446
                                                                                   447
          ELSE
          MU2 = MU2 + (.05*(AL3M*9.) + (ALOH*4.) + ALOH2 + ALOH4 + (ALF*4.) +
                                                                                   448
                                                                                   449
          ALF2+ALF4+(ALF5*4.)+(ALF6*9.)+ALS04+ALS042)
                                                                                   450
       CHECKS FOR CONVERGENCE OF SULFATE VALUES
                                                                                   451
C
       IF (SO4.GE.TSO4Z) THEN
                                                                                   452
                                                                                   453
          GO TO 64
```

```
ELSE
                                                                                    454
             MSO4 = TSO4Z - CASO4 - MGSO4 - ALSO4 - (2.*ALSO42)
                                                                                    455
       END IF
                                                                                    456
       IF(ABS((MSO4-SO4)/(MSO4+SO4)) .LE. .001) THEN
                                                                                    457
          GO TO 64
                                                                                    458
          ELSE
                                                                                    459
             SO4 = ((MSO4 - SO4)/2.) + SO4
                                                                                    460
C.....DEBYE-HUCKEL EQUATION USED TO COMPUTE ACTIVITY COEFFICIENTS.
                                                                                    461
       AN EXTENDED FORM OF THE DEBYE-HUCKEL EQUATION, GOOD FOR MU <
                                                                                    462
С
       .1 (STUMM AND MORGAN) IS USED:
                                                                                    463
C
       LOGF = -A*(Z**2)*(MU**.5)/(1.+B*a*(MU**.5))
                                                                                    464
C
       A AND B ARE COMPUTED ACCORDING TO CHANGES WITH TEMPERATURE.
                                                                                    465
             MUF = MU2**.5
                                                                                    466
             Z = (-A*(MUF))/(1.0+((9.0E+8)*B*(MUF)))
                                                                                    467
             GH = 10.**Z
                                                                                    468
             GOH = 10.**((-A*(MUF))/(1.0+(3.5E+8)*B*(MUF)))
                                                                                    469
             GCA = 10.**((-A*4.*(MUF))/(1.0+(6.0E+8)*B*(MUF)))
                                                                                    470
             GMG = 10.**((-A*4.*(MUF))/(1.0+(8.0E+8)*B*(MUF)))
                                                                                    471
             GCAHCO3 = 10.**((-A*(MUF))/(1.0+(4.25E+8)*B*(MUF)))
                                                                                    472
             GMGHCO3=GCAHCO3
                                                                                    473
             GCO3 = 10.**((-A*4.*(MUF))/(1.0+(4.5E+8)*B*(MUF)))
                                                                                    474
             GSO4 = 10.**((-A*4.*(MUF))/(1.0+(4.25E+8)*B*(MUF)))
                                                                                    475
             GHCO3 = GCAHCO3
                                                                                    476
             GAL = 10.**((-A*9.*(MUF))/(1.0+(9.0E+8)*B*(MUF)))
                                                                                    477
             GMN = GCA
                                                                                    478
             GPO4 = 10.**((-A*9.*(MUF))/(1.0+(4.25E+8)*B*(MUF)))
                                                                                    479
             IF (FER .GE. 1.) THEN
                                                                                    480
                GFE = GPO4
                                                                                    481
                ELSE
                                                                                    482
                GFE - GCA
                                                                                    483
             END IF
                                                                                    484
             GNA = GHCO3
                                                                                    485
             GF - GOH
                                                                                    486
             GK = 10.**((-A*(MUF))/(1.0+(3.0E+8)*B*(MUF)))
                                                                                    487
             GCL - GK
                                                                                    488
             GBR - GK
                                                                                    489
             GNO3 = GK
                                                                                    490
             GNH4 = 10.**(-A*(MUF)/(1.0+(2.5E+8)*B*(MUF)))
                                                                                    491
C
         CALCULATES HCO3 FROM ALKALINITY EQUATION
                                                                                    492
         IF (ALSP(IL) .EO. 1.) THEN
                                                                                    493
            HCO3 = ALKZ - (2.*CO3) + HY - ORG - (3.*PO4Z) - OH + (3.*ALZ)
                                                                                    494
            ELSE
                                                                                    495
            HCO3 = ALKZ - (2.*CO3) + HY - ORG - (3.*PO4Z) - OH + (3.*AL3M) +
                                                                                    496
            (2.*(ALOH))+(ALOH2)-ALOH4+(3.*ALF)+(3.*ALF2)+(3.*ALF3)+
                                                                                    497
     *
                                                                                    498
            (3.*ALF4)+(3.*ALF5)+(3.*ALF6)+(3.*ALS04)+(3.*ALS042)
```

```
END IF
                                                                                    499
         H2CO3 = GH*HY*GHCO3*HCO3/K10
                                                                                    500
                                                                                    501
         GO TO 63
       END IF
                                                                                    502
C
       CALCULATES ALKALINITY USING ALTERNATIVE METHOD Cb-Ca.
                                                                                    503
   64 NEWALK = (2.*CA)+(2.*MG)+NAZ+KZ+NH4Z-(NO3Z+(2.*SO4)+FZ+CLZ)
                                                                                    504
        IF (ALSP(IL) .EQ. 1.) THEN
                                                                                    505
           HCO3 = ALKZ - (2.*CO3) + HY - ORG - (3.*PO4Z) - OH + (3.*ALZ)
                                                                                    506
           ELSE
                                                                                    507
           HCO3 = ALKZ - (2.*CO3) + HY - ORG - (3.*PO4Z) - OH + (3.*AL3M) +
                                                                                    508
                      (2.*(ALOH))+(ALOH2)-ALOH4
                                                                                    509
        END IF
                                                                                    510
        SO4 = MSO4
                                                                                    511
                                                                                    512
                                                                                    513
C*****END OF LOOP TO CALCULATE IONIC STRENGTH AND CARBONATE SPECIES.
C
                                                                                    514
C.....CALCULATION OF SPECIFIC CONDUCTANCE USING METHOD OF
                                                                                    515
C.....R.C. REYNOLDS (1978).
                                                                                    516
       SCCA=CA*2.*(59.5-(59.5*.634*2.*MUF))
                                                                                    517
       SCMG=MG*2.*(53.06-(53.06*.634*2.*MUF))
                                                                                    518
       SCH=HY*(349.82-(349.82*.634*MUF))
                                                                                    519
       SCNA=NAZ*(50.11-(50.11*.634*MUF))
                                                                                    520
       SCK = KZ*(73.52-(73.52*.634*MUF))
                                                                                    521
       SCCAHCO3=CAHCO3*(45.-(45.*.634*MUF))
                                                                                    522
       SCMGHCO3=MGHCO3*(45.-(45.*.634*MUF))
                                                                                    523
       SCCO3=CO3*2.*(97.-(97.*.634*2.*MUF))
                                                                                    524
       SCHCO3=HCO3*(44.48-(44.48*.634*MUF))
                                                                                    525
       SCOH=OH*(198-(198*.634*MUF))
                                                                                    526
       SCCL=CLZ*(76.34-(76.34*.634*MUF))
                                                                                    527
       SCSO4=SO4*2.*(79.8-(79.8*.634*2.*MUF))
                                                                                    528
       SCNH4=NH4Z*(73.4-(73.4*.634*MUF))
                                                                                    529
       SCNO3Z=NO3Z*(71.44-(71.44*.634*MUF))
                                                                                    530
       SCBR=BRZ*(78.4-(78.4*.634*MUF))
                                                                                    531
       SC25 = 1000.*(SCCA+SCMG+SCH+SCNA+SCK+SCCAHCO3+SCMGHCO3+SCBR)
                                                                                    532
       SC25T = SC25 +(1000.*(SCCO3+SCHCO3+SCOH+SCCL+SCSO4+SCNH4+SCNO3))
                                                                                    533
C.....FOR SOME SC METERS, THE FOLLOWING TEMPERATURE CORRECTION MAY BE
                                                                                    534
С
       NEEDED.
                                                                                    535
C
         SC25T = SC25T/(EXP(0.02*(25-CTEMP2)))
                                                                                    536
       SCDIF = ((ABS(SC25T-SCLAB(IL)))/(SC25T+SCLAB(IL)))*100.
                                                                                    537
C.....E2 PARAMETERS ARE UEQ/L (USED FOR GRAPHING)
                                                                                    538
       EF = 10.**6.
                                                                                    539
       CAE2 = CAE \times EF
                                                                                    540
       MGE2 - MGE*EF
                                                                                    541
       NAE2 = NAZ \times EF
                                                                                    542
                                                                                    543
       KE2 - KZ*EF
                                                                                    544
       NH4E2 = NH4Z*EF
```

	_	
	$ALE2 = ALE \times EF$	545
	$MNE2 = MNE \times EF$	546
	FEE2 = FEE*EF	547
	PO4E2 = PO4E*EF	548
	SO4E2 = SO4E*EF	549
	BRE2 = BRZ * EF	550
	IF (FI(IL) .EQ. 2.) THEN	551
	FE2 = FZ2*EF	552
	ELSE	553
	FE2 = FZ*EF	554
	END IF	555
	CLE2 = CLZ*EF	556
•	NO3E2 = NO3Z*EF	557
6	.CALCULATES ACTIVITIES	558
	ACA = CA*GCA	559
	AMG = MG*GMG	560
	ASO4 = SO4*GSO4	561
	ANO3 = NO3Z*GNO3	562
	ANH4 = NH4Z*GNH4	563
	ANA = NAZ*GNA	564
	AK = KZ*GK	565
	ACL = CLZ*GCL	566
	ABR = BRZ*GBR	567
	AF = FZ*GF	568
	APO4 = PO4Z*GPO4	569
	AFE = FEZ*GFE	570
	AMN = MNZ*GMN	571
	AAL = AL3M*GAL	572
	ACO3 = CO3*GCO3	573
	AHCO3 = HCO3*GHCO3	574
	AOH = GOH*OH	575
C	CALCULATES ION RATIOS	576
	RNA = NAZ/CLZ	577
	RCA = TCAZ/CLZ	578
	RMG = TMGZ/CLZ	579
	RK = KZ/CLZ	580
	RAL = ALZ/CLZ	581
	RSO4 = TSO4Z/CLZ	582
	IF (TSO4Z .NE. 0.0 .AND. NO3Z .NE. 0.0) THEN	583
	RSO4NO3 = TSO4Z/NO3Z	584
	·	
	RHNO3 = H/NO3Z $RHSN = H/(TSO(7)NO3Z)$	585 586
	RHSN = H/(TSO4Z+NO3Z) $RISE RINO3 = 0.00$	586
	ELSE RHNO3 = 0.0	587
	END IF	588
	IF (TSO4Z .NE. 0.0) THEN	589
	RHSO4 = H/TSO4Z	590

```
END IF
                                                                                      591
       R2CA = CA/CLZ
                                                                                      592
       R2MG = MG/CLZ
                                                                                      593
       R2SO4 = SO4/CLZ
                                                                                      594
       R2AL = AL3M/CLZ
                                                                                      595
       IF (AL(IL) .NE. O. .AND. AL3 .NE. O.) THEN
                                                                                      596
          LRAL = (LOG10(AL3))/(LOG10(H))
                                                                                      597
       END IF
                                                                                      598
C.....CALCULATES SATURATION INDEX FOR BASIC ALUMINUM SULFATE
                                                                                      599
       ALSULF = (AL3*AOH*ASO4)/(5.89E-18)
                                                                                      600
C.....CALCULATES ION BALANCE FROM COMPUTED DATA, USING ORG, ANION AND
                                                                                      601
C.....CARBONATE SPECIES.
                                                                                      602
       IF (ALSP(IL) .EQ. 2.) THEN
                                                                                      603
         CAT = (CA*2.) + (MG*2.) + HY + (NAZ) + (NH4Z) +
                                                                                      604
         (KZ)+
                                                                                      605
     *
         (CAHCO3)+
                                                                                      606
         (MGHCO3)+((MNZ*2.))+
                                                                                      607
         (AL3M*3.)+(2.*ALOH) + (ALOH2)
                                                                                      608
           IF (FER .GE. 1.) THEN
                                                                                      609
               CAT = CAT + (FEZ*3.)
                                                                                      610
               ELSE
                                                                                      611
               CAT = CAT + (FEZ * 2.)
                                                                                      612
           END IF
                                                                                      613
         AN = (CO3*2.) + (HCO3) + (OH) + (SO4*2.) + (PO4Z*3.)
                                                                                      614
         +(FZ)+(BRZ)+(NO3Z)+ORG+(CLZ)+ALOH4
                                                                                      615
         CATAN = ((ABS(CAT-AN))/(CAT+AN))*100.
                                                                                      616
         ELSE
                                                                                      617
         CAT = (CA*2.) + (MG*2.) + HY + (NAZ) + (NH4Z) +
                                                                                      618
         (KZ)+(CAHCO3)+(MGHCO3)+((MNZ*2.))+(ALZ*3.)
                                                                                      619
           IF (FER .GE. 1.) THEN
                                                                                      620
               CAT = CAT + (FEZ * 3.)
                                                                                      621
               ELSE
                                                                                      622
               CAT = CAT + (FEZ * 2.)
                                                                                      623
            END IF
                                                                                      624
         AN = (CO3*2.) + (HCO3) + (OH) + (SO4*2.) + (PO4Z*3.) +
                                                                                      625
         (FZ)+(BRZ)+(NO3Z)+ORG+(CLZ)
                                                                                      626
         CATAN = ((ABS(CAT-AN))/(CAT+AN))*100.
                                                                                      627
       END IF
                                                                                      628
C.....CALCULATES ION BALANCE FROM ANALYTICAL DATA, USING ORG. ANION, AND
                                                                                      629
       BICARBONATE
                                                                                      630
       CAT2=(TCAZ*2.)+(TMGZ*2.)+H+NAZ+KZ+(FEZ*3.)+(MNZ*2.)+ALZ*3.+NH4Z
                                                                                      631
       AN2=OH+(TSO4Z*2.)+(PO4Z*3.)+FZ+BRZ+NO3Z+CLZ+ORG+ALK1(IL)
                                                                                      632
       IF (ALK1(IL) .LE. O. ) THEN
                                                                                      633
          AN2 = AN2 - ALK1(IL)
                                                                                      634
          ELSE
                                                                                      635
          AN2 = AN2
                                                                                      636
```

```
END IF
                                                                                        637
       CATAN2 = ((ABS(CAT2-AN2))/(CAT2+AN2))*100.
                                                                                        638
C
                                                                                        639
C..... WRITES OUTPUT FOR CREATING BAR GRAPHS
                                                                                        640
C....OF UEO/L FOR EACH CONSTITUENT.
                                                                                        641
                                                                                        642
C
       WRITE (62,130)SITE(IL), DATE(IL)
                                                                                        643
C
       WRITE (62,131) HE2, NAE2, CAE2, MGE2, KE2, NH4E2
                                                                                        644
C
       WRITE (62.132)
                                                                                        645
C
       WRITE (62,133) ALE2, MNE2, FEE2
                                                                                        646
C
       WRITE (62,132)
                                                                                        647
C
       WRITE (62,134) OHE2, NO3E2, PO4E2, ORGE2, SO4E2, CLE2, BRE2, FE2
                                                                                        648
C
                                                                                        649
C.....GENERATES OUTPUT TO SCREEN AND OUTPUT FILE
                                                                                        650
                                                                                        651
       IF (LFI(IL) .EQ. 2.) THEN
                                                                                        652
           WRITE(61,7)
                                                                                        653
           ELSE
                                                                                        654
           WRITE(61,8)
                                                                                        655
       END IF
                                                                                        656
       WRITE (61,9)
                                                                                        657
       WRITE (61,10) HY, HY, H, GH
                                                                                        658
       WRITE(61,11) TCA(IL), TCAZ, CAE, ACA, GCA, AZ2(IL)
                                                                                        659
       WRITE (61,12) TMG(IL), TMGZ, MGE, AMG, GMG, AZ3(IL)
                                                                                        660
       WRITE (61,13) NA(IL), NAZ, NAZ, ANA, GNA, AZ5(IL)
                                                                                        661
       WRITE(61,14) K(IL), KZ, KZ, AK, GK, AZ6(IL)
                                                                                        662
       WRITE(61,15) NH4(IL), NH4Z, NH4Z, ANH4, GNH4, AZ8(IL)
                                                                                        663
       WRITE(61,16) CL(IL), CLZ, CLZ, ACL, GCL, AZ9(IL)
                                                                                        664
       IF (FI(IL) .EQ. 2.) THEN
                                                                                        665
           WRITE (61,17) F(IL), FZ2, FZ2, AF, GF, AZ10(IL)
                                                                                        666
           ELSE
                                                                                        667
           WRITE (61,18) F(IL), FZ, FZ, AF, GF, AZ10(IL)
                                                                                        668
                                                                                        669
       WRITE(61,19) BR(IL), BRZ, BRZ, ABR, GBR, AZ11(IL)
                                                                                        670
       WRITE (61,20) TSO4(IL), TSO4Z, SO4E, ASO4, GSO4, AZ12(IL)
                                                                                        671
       WRITE (61,21) NO3(IL), NO3Z, NO3Z, ANO3, GNO3, AZ13(IL)
                                                                                        672
       WRITE (61,22) PO4(IL), PO4Z, PO4E, APO4, GPO4, AZ14(IL)
                                                                                        673
       WRITE (61,23) ALK1(IL), ALKZ, AZ15(IL)
                                                                                        674
       WRITE (61,24) DOC(IL), AZ16(IL)
                                                                                        675
       WRITE (61,25) DO(IL), AZ17(IL)
                                                                                        676
       WRITE(61,26)
                                                                                        677
       WRITE (61,27) AL(IL), ALZ, ALE, AAL, GAL, AZ1(IL)
                                                                                        678
       WRITE (61,28) MN(IL), MNZ, MNE, AMN, GMN, AZ4(IL)
                                                                                        679
       WRITE (61,29) FE(IL), FEZ, FEE, AFE, GFE, AZ7(IL)
                                                                                        680
       IF (DO(IL) .EQ. 0.) THEN
                                                                                        681
          WRITE (61,30)
                                                                                        682
```

```
FER = 0.
                                                                                   683
        ELSE IF (FER .GE. 1.) THEN
                                                                                   684
        WRITE(61,31)
                                                                                   685
        ELSE
                                                                                   686
        WRITE(61,32)
                                                                                   687
     END IF
                                                                                   688
     WRITE (61,33)
                                                                                   689
     WRITE (61,34) CA,MG,SO4
                                                                                   690
     IF (FI(IL) .EQ. 2.) THEN
                                                                                   691
        WRITE (61,35) FZ,HF
                                                                                   692
        ELSE
                                                                                   693
        CONTINUE
                                                                                   694
     END IF
                                                                                   695
     WRITE (61,36) OH, CASO4, MGSO4
                                                                                   696
     WRITE (61,37) CAHCO3, MGHCO3
                                                                                   697
     WRITE (61,38) CO3, HCO3, H2CO3, CACO3, MGCO3
                                                                                   698
     WRITE (61,39) AL3M, ALOH, ALOH2, ALOH3, ALOH4
                                                                                   699
     WRITE (61,40) ALF, ALF2, ALF3, ALF4, ALF5, ALF6, ALS04, ALS042
                                                                                   700
     WRITE (61,41) RNA, RCA, RMG, RK, RAL, RSO4, RSO4NO3, RHSO4, RHNO3.
                                                                                   701
                    RHSN
                                                                                   702
     WRITE (61,42) R2CA, R2MG, R2SO4, R2AL
                                                                                   703
     WRITE (61,43) FER, PE
                                                                                   704
     WRITE (61,44) LRAL
                                                                                   705
     WRITE (61,45) TAL, ALSULF
                                                                                   706
     WRITE (61,46) ORG
                                                                                   707
     WRITE (61,47)ALKZ, NEWALK
                                                                                   708
     WRITE (61,48) MU2
                                                                                   709
     WRITE (61,49) TDSRAT
                                                                                   710
     WRITE(61,50)CAT2,AN2
                                                                                   711
     WRITE(61,51)CATAN2
                                                                                   712
     IF (CATAN2 .GE. 10.) THEN
                                                                                   713
        WRITE (61,52)
                                                                                   714
        ELSE IF (CATAN2 .LE. 10. .AND. CATAN2 .GE. 5.) THEN
                                                                                   715
        WRITE (61,53)
                                                                                   716
     END IF
                                                                                   717
     WRITE (61,54)CAT,AN
                                                                                   718
     WRITE(61,55)CATAN
                                                                                   719
     WRITE (61,56) SC25T
                                                                                   720
     WRITE (61,57)SCDIF
                                                                                   721
     IF (SCDIF .GE. 10.) THEN
                                                                                   722
        WRITE (61,58)
                                                                                   723
        ELSE IF (SCDIF .LE. 10. .AND. SCDIF .GE. 5.) THEN
                                                                                   724
                                                                                   725
        WRITE (61,59)
     END IF
                                                                                   726
500
     CONTINUE
                                                                                   727
800 FORMAT (G10.4E2)
                                                                                   728
```

```
66 FORMAT (G10.4E2,G10.4E2,G10.4E2)
                                                                                 729
                                                                                 730
  600 FORMAT (G10.4E2,G10.4E2)
  130 FORMAT (A15,A15,'$',/,'0.0')
                                                                                 731
 131 FORMAT (5(F7.2),/)
                                                                                 732
C 132 FORMAT ('0.0',/)
                                                                                 733
C 133 FORMAT (3(F7.2,/))
                                                                                 734
C 134 FORMAT (7(F7.2,/))
                                                                                 735
   1 FORMAT ('1', 98('*'), //, ' SITE ID = ',A15,3X,'DATE: ',A12,/,
                                                                                 736
    * ' DATE RUN ON ARCHEM.F77: ',A12,//)
                                                                                 737
    2 FORMAT(1X,'PHFLD=',F6.3,5X,' TEMP=',F6.3,5X,' SCFLD=',F7.3)
                                                                                 738
    3 FORMAT(1X, 'PHLAB=', F6.3, 5X, 'TEMP=', F6.3, 5X, 'SCLAB=', F7.3, /)
                                                                                 739
    4 FORMAT ('***WARNING: THIS PROGRAM SHOULD ONLY BE USED FOR',/,
                                                                                 740
    * 'SAMPLES WITH PH LESS THAN 10.0***')
                                                                                 741
    5 FORMAT ('***WARNING: THIS PROGRAM SHOULD ONLY BE USED FOR',/,
                                                                                 742
    * 'TEMPERATURES IN THE RANGE OF 0.1 TO 100 DEGREES CENTIGRADE***')
                                                                                 743
    6 FORMAT(' RATIO OF H+ ACTIVITY FIELD TO H+ ACTIVITY LAB= '.
                                                                                 744
    * G10.4E2,/,' RATIO OF SC FIELD TO SC LAB= ',F5.2,/)
                                                                                 745
    7 FORMAT (' FIELD DATA WERE USED', /, 98(' '), /, /)
                                                                                 746
    8 FORMAT (' LAB DATA WERE USED', /, 98(' '), /, /)
                                                                                 747
    9 FORMAT (1X, 'INPUT PARAMETERS', 47X, 'CALCULATED PARAMETERS',
                                                                                 748
     * /,/,10X,'MG/L ',9X,'MOLARITY',
                                                                                 749
     * 7X, 'EQ/L ', 20X, 'ACTIVITY', 7X, 'GAMMA', 9X, '1.=<')
                                                                                 750
   10 FORMAT (1X,'H=',20X,G10.4E2,5X,G10.4E2,15X,G10.4E2,5X,G10.4E2)
                                                                                 751
   11 FORMAT (' CA=',3(5X,G10.4E2),10X,2(5X,G10.4E2),6X,F2.0)
                                                                                 752
   12 FORMAT (' MG=',3(5X,G10.4E2),10X,2(5X,G10.4E2),6X,F2.0)
                                                                                 753
   13 FORMAT (' NA=', 3(5X,G10.4E2), 10X, 2(5X,G10.4E2), 6X,F2.0)
                                                                                 754
   14 FORMAT (' K= ',3(5X,G10.4E2),10X,2(5X,G10.4E2),6X,F2.0)
                                                                                 755
   15 FORMAT (' NH4=',4X,G10.4E2,2(5X,G10.4E2),10X,2(5X,G10.4E2),
                                                                                 756
     * 6X, F2.0)
                                                                                 757
   16 FORMAT (' CL=',3(5X,G10.4E2),10X,2(5X,G10.4E2),6X,F2.0)
                                                                                 758
   17 FORMAT (' F= ', 3(5X, G10.4E2), 10X, 2(5X, G10.4E2), 6X, F2.0)
                                                                                 759
   18 FORMAT (' F= ', 3(5X,G10.4E2), 10X, 2(5X,G10.4E2), 6X,F2.0)
                                                                                 760
   19 FORMAT (' BR=',3(5X,G10.4E2),10X,2(5X,G10.4E2),6X,F2.0)
                                                                                 761
   20 FORMAT (' SO4=', 4X, G10.4E2, 2(5X, G10.4E2), 10X, 2(5X, G10.4E2),
                                                                                 762
     * 6X.F2.0)
                                                                                 763
   21 FORMAT (' NO3=', 4X,G10.4E2,2(5X,G10.4E2),10X,2(5X,G10.4E2),
                                                                                 764
                                                                                 765
    * 6X, F2.0)
   22 FORMAT (' PO4=',4X,G10.4E2,2(5X,G10.4E2),10X,2(5X,G10.4E2),
                                                                                 766
     *6X,F2.0)
                                                                                 767
   23 FORMAT (' ALK=',4X,15X,G10.4E2,5X,G10.4E2,46X,F2.0)
                                                                                 768
   24 FORMAT (' DOC=',4X,G10.4E2,76X,F2.0)
                                                                                 769
   25 FORMAT (' DO=',5X,G10.4E2,76X,F2.0,/)
                                                                                 770
   26 FORMAT (10X, 'UG/L ', 9X, 'MOLARITY', 7X, 'EQ/L ', 20X,
                                                                                 771
    * 'ACTIVITY',7X,'GAMMA',9X,'1.=<')
                                                                                 772
   27 FORMAT (' AL=',3(5X,G10.4E2),10X,2(5X,G10.4E2),6X,F2.0)
                                                                                 773
   28 FORMAT (' MN=',3(5X,G10.4E2),10X,2(5X,G10.4E2),6X,F2.0)
                                                                                 774
```

```
29 FORMAT (' FE=', 3(5X,G10.4E2),10X,2(5X,G10.4E2),6X,F2.0,/,
                                                                              775
  * 98(' '),/)
                                                                              776
30 FORMAT (/, 'ALL FE ASSIGNED TO +3 VALENCE AND RATIO FE+3/FE+2'/,
                                                                              777
 * ' SET EOUAL TO 1 (SEE BELOW) AS INPUT VALUE OF DOX WAS 0.'./)
                                                                              778
31 FORMAT (/, ALL FE | ASSIGNED TO +3 VALENCE AS FE+3/FE+2 RATIO',/,
                                                                              779
 * ' COMPUTED BELOW IS GREATER THAN 1.',/)
                                                                              780
32 FORMAT (/, ' ALL FE ASSIGNED TO +2 VALENCE AS FE+3/FE+2 RATIO',/,
                                                                              781
  * ' COMPUTED BELOW IS LESS THAN 1.',/)
                                                                              782
33 FORMAT(1X,70(' '),//,1X,'MOLARITIES CALCULATED',/
                                                                              783
 * ' FROM EQUILIBRIUM SPECIATION EQUATIONS',/)
                                                                              784
34 FORMAT (' CA= ',8X,G10.4E2,/,' MG= ',8X,G10.4E2,/,' SO4= ',7X,
                                                                              785
  * G10.4E2)
                                                                              786
35 FORMAT (' F= ',9X,G10.4E2,/,' HF= ',8X,G10.4E2)
                                                                              787
36 FORMAT (' OH= ',8X,G10.4E2,/,/,' SULFATE SPECIES',/,/' CASO4= ',
                                                                              788
  * 5X,G10.4E2,/,' MGSO4= ',5X,G10.4E2)
                                                                              789
37 FORMAT (/, 'CARBONATE SPECIES',/,/'CAHCO3=',4X,G10.4E2,
                                                                              790
  * /' MGHCO3= ',4X,G10.4E2)
                                                                              791
38 FORMAT (' CO3= ',7X,G10.4E2,3X,
                                                                              792
  * /' HCO3= ',6X,G10.4E2,/,1X,'H2CO3= ',5X,G10.4E2,/,
                                                                              793
  * ' CACO3= ',5X,G10.4E2,/,' MGCO3= ',5X,G10.4E2)
                                                                              794
39 FORMAT (/,' ALUMINUM SPECIES',/,/,
                                                                              795
  * ' AL3+= ',6X,G10.4E2,/' ALOH= ',6X,G10.4E2,/' ALOH2= ',5X,G10.4E2,
                                                                              796
  * /, ' ALOH3= ',5X,G10.4E2,/,' ALOH4= ',5X,G10.4E2)
                                                                              797
40 FORMAT ('ALF-',7X,G10.4E2,/'ALF2-',6X,G10.4E2,/'ALF3-',6X,
                                                                              798
  * G10.4E2.
                                                                              799
  * /' ALF4= ',6X,G10.4E2,/' ALF5= ',6X,G10.4E2,/' ALF6= ',6X,
                                                                              800
  * G10.4E2,/,' ALSO4=',5X,G10.4E2,/' ALSO42=',4X,G10.4E2)
                                                                              801
41 FORMAT(/,1X,70('_'),//,' ION RATIOS FROM ANALYTICAL MOLARITIES=',
                                                                              802
  * 1X,/,' NA/CL=',G10.4E2,/,' CA/CL=',G10.4E2,/,' MG/CL=',
                                                                              803
  * G10.4E2,/,' K/CL= ',G10.4E2,/,' AL/CL= ',G10.4E2,/,' S04/CL= ',
                                                                              804
  * G10.4E2,/,' CA/MG= ',G10.4E2,/,' SO4/NO3= ',G10.4E2,/,
                                                                              805
  * ' H/SO4= ',G10.4E2,/,' H/NO3= ',G10.4E2,/,' H/(SO4+NO3)= ',
                                                                              806
                                                                              807
42 FORMAT (/,' ION RATIOS FROM COMPUTED MOLARITIES',/,' CA/CL=',
                                                                              808
  * G10.4E2,/,' MG/CL=',G10.4E2,/,' S04/CL=',G10.4E2,/,' AL/CL=',
                                                                              809
  * G10.4E2,/)
                                                                              810
43 FORMAT (/,' FE+3/FE+2= ',5X,G10.4E2,/,' PE=',
                                                                              811
  * 5X,G10.4E2,/)
                                                                              812
44 FORMAT (' RATIO (LOG ACTIVITY AL3+)/(LOG ACTIVITY OF H+)= '.
                                                                              813
  * G10.4E2,/,1X,70(''),/)
                                                                              814
45 FORMAT (/, ' RECALCULATED TOTAL ALUMINUM, MOLES/L = ',G10.4E2,
                                                                              815
  * /,' SATURATION INDEX FOR BASIC ALUMINUM SULFATE= ',G10.4E2)
                                                                              816
46 FORMAT (/, 'ORGANIC ANION CONC, EQ/L = ',G10.4E2,/)
                                                                              817
47 FORMAT (' MEASURED ALKALINITY, EQ/L = ',G10.4E2,/,
* ' NEWALK, ALKALINITY CALCULATED FROM Cb-Ca= ',G10.4E2,/)
                                                                              818
                                                                              819
48 FORMAT (' IONIC STRENGTH= ',G10.4E2,/)
                                                                              820
```

	49	FORMAT(' RATIO TDS TO SC (GENERALLY .55 TO .75. USE WITH CAUTION	821
	*	FOR VERY LOW I.S. SAMPLES) = ',2X,G10.4E2,/)	822
	50	FORMAT(' SUM CATION EQ/L = ',G10.4E2,/' SUM ANION EQ/L = ',	823
	*	G10.4E2)	824
	51	FORMAT (' ANALYTICAL PERCENT DIFFERENCE IN CATIONS VS ANIONS= ',	825
	*	F7.3,/)	82€
	52	FORMAT (' *** FAILS IONBAL AT 10% ***',/)	827
	53	FORMAT (' *** FAILS IONBAL AT 5% ***',/)	828
	54	FORMAT (' SUM OF CATIONS- ',G10.4E2,/' SUM OF ANIONS- ',	829
	*	G10.4E2)	830
	55	FORMAT (' COMPUTED PERCENT DIFFERENCE IN CATIONS VS ANIONS= ',	831
	*	F7.3,/,/)	832
	56	FORMAT (' PREDICTED SC -', F8.3)	833
	57	FORMAT(' PERCENT DIFFERENCE IN SC MEASURED VS PREDICTED= ',F7.3)	834
	58	FORMAT (/,' *** FAILS SC TEST AT 10% ***',/)	835
	59	FORMAT (/,' *** FAILS SC TEST AT 5% ***',/)	836
С		FORMAT (/,' H/SC-',G10.4E2,/,' H/SCDIF-',G10.4E2,/,	837
С	*	' ORG/H= ',G10.4E2,/,' ORG/SCDIF= ',G10.4E2,/,' ORG/SC= ',	838
С	*	G10.4E2,/)	839
		GO TO 62	840
	60	WRITE (*,61)	841
	61	FORMAT (' ERROR')	842
	62	STOP	843
		END	844